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Abstract. Traits offer a fine-grained mechanism to compose classes from reus-
able components while avoiding problems of fragility brought by multiple inher-
itance and mixins. Traits as originally proposed are stateless, that is, they contain
only methods, but no instance variables. State can only be accessed within traits
by accessors, which become required methods of the trait. Although this approach
works reasonably well in practice, it means that many traits, viewed as software
components, are artificially incomplete, and classes that use such traits may con-
tain significant amounts of boilerplate glue code. Although these limitations are
largely mitigated by proper tool support, we seek a cleaner solution that sup-
ports stateful traits. The key difficulty is how to handle conflicts that arise when
composed traits contribute instance variables whose names clash. We present a
solution that is faithful to the guiding principle of stateless traits: the client re-
tains control of the composition. Stateful traits consist of a minimal extension
to stateless traits in which instance variables are purely local to the scope of a
trait, unless they are explicitly made accessible by the composing client of a trait.
Naming conflicts are avoided, and variables of disjoint traits can be explicitly
merged by clients. We discuss and compare two implementation strategies, and
briefly present a case study in which stateful traits have been used to refactor the
trait-based version of the Smalltalk collection hierarchy.

1 Introduction

Traits are pure units of reuse consisting only of methods [SDNB03, DNS+06]. Traits
can be composed to either form other traits or classes. They are recognized for their
potential in supporting better composition and reuse, hence their integration in newer
versions of languages such as Perl 6, Squeak [IKM+97], Scala [sca], Slate [Sla] and
Fortress [for]. Although traits were originally designed for dynamically-typed languages,
there has been considerable interest in applying traits to statically-typed languages as
well [FR03, SD05, NDS06].

Traits make it possible for inheritance to be used to reflect conceptual hierarchy
rather than for code reuse. Duplicated code can be factored out as traits, rather than
being jimmied into a class hierarchy in awkward locations. At the same time, traits
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largely avoid the fragility problems introduced by approaches based on multiple inher-
itance and mixins, since traits are entirely divorced from the inheritance hierarchy.

In their original form, however, traits are stateless, i.e., traits are purely groups of
methods without any instance variables. Since traits not only provide methods, but may
also require methods, the idiom introduced to deal with state was to access state only
through accessors. The client of a trait is either a class or a composite trait that uses
the trait to build up its implementation. A key principle behind traits is that the client
retains control of the composition. The client, therefore, is responsible for providing
the required methods, and resolving any possible conflicts. Required accessors would
propagate to composite traits, and only the composing client class would be required to
implement the missing accessors and the instance variables that they give access to. In
practice, the accessors and instance variables could easily be generated by a tool, so the
fact that traits were stateless posed only a minor nuisance.

Conceptually, however, the lack of state means that virtually all traits are incom-
plete, since just about any useful trait will require some accessors. Furthermore, the
mechanism of required methods is abused to cover for the lack of state. As a conse-
quence, the required interface of a trait is cluttered with noise that impedes the under-
standing and consequently the reuse of a trait. Even if the missing state and accessors
can be generated, many clients will consist of “shell classes” — classes that do nothing
but compose traits with boilerplate glue code. Furthermore, if the required accessors
are made public (as is the case in the Smalltalk implementation), encapsulation is un-
necessarily violated in the client classes. Finally, if a trait is ever modified to include
additional state, new required accessors will be propagated to all client traits and classes,
thus introducing a form of fragility that traits were intended to avoid!

This paper describes stateful traits, an extension of stateless traits in which a single
variable access operator is introduced to give clients of traits control over the visibility
of instance variables. The approach is faithful to the guiding principle of stateless traits
in which the client of a trait has full control over the composition. It is this principle that
is the key to avoiding fragility in the face of change, since no implicit conflict resolution
rules come into play when a trait is modified.

In a nutshell, instance variables are private to a trait. The client can decide, however,
at composition time to access instance variables offered by a used trait, or to merge vari-
ables offered by multiple traits. In this paper we present an analysis of the limitations of
stateless traits and we present our approach to achieving stateful traits. We describe and
compare two implementation strategies, and we briefly describe our experience with an
illustrative case study.

The structure of this paper is as follows: First we review stateless traits [SDNB03,
DNS+06]. In Section 3 we discuss the limitations of stateless traits. In Section 4 we
introduce stateful traits, which support the introduction of state in traits. Section 5 out-
lines some details of the implementation of stateful traits. In Section 6 we present a
small case study in which we compare the results of refactoring the Smalltalk collec-
tions hierarchy with both stateless and stateful traits. In Section 7 we discuss some of
the broader consequences of the design of stateful traits. Section 8 discusses related
work. Section 9 concludes the paper.



Stateful Traits 3

SyncStream
lock
lock
lock:
isBusy
hash

TSyncReadWrite
syncRead
syncWrite
hash

read
write
lock:
lock

@{hashFromSync -> hash}

TStream
read
write
hash

@{hashFromStream -> hash}

syncRead
    | value |
    self lock acquire.
    value := self read.
    self lock release.
    ^ value

syncWrite
    | value |
    self lock acquire. 
    value := self write.
    self lock release.
    ^ value

hash
    ^ self hashFromSync
        bitAnd: self hashFromStream

Uses trait

Trait Name
provided 
methods

required
methods

Fig. 1. The class SyncStream is composed of the two traits TSyncReadWrite and
TStream

2 Stateless traits

2.1 Reusable groups of methods

Stateless traits are sets of methods that serve as the behavioural building block of classes
and primitive units of code reuse [DNS+06]. In addition to offering behaviour, traits
also require methods, i.e., methods that are needed so that trait behaviour is fulfilled.
Traits do not define state, instead they require accessor methods.

In Figure 1, the trait TSyncReadWrite provides the methods syncRead, syncWrite
and hash. It requires the methods read and write, and the two accessor methods
lock and lock:. We use an extension to UML to represent traits (the right column
lists required methods while the left one lists the provided methods).

2.2 Composing classes from mixins

The following equation depicts how a class is built with traits:
class = superclass + state + trait composition + glue code
A class is specified from a superclass, state definition, a set of traits, and some glue

methods. Glue methods are defined in the class and they connect the traits together; i.e.,
they implement required trait methods (often for accessing state), they adapt provided
trait methods, and they resolve method conflicts.

In Figure 1, the class SyncStream defines the field lock and the glue methods
lock, lock:, isBusy and hash. The other required methods of TSyncReadWrite,
read and write, are also provided since the class SyncStream uses another trait
TStream which provides them.
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Trait composition respects the following three rules:

– Methods defined in the class take precedence over trait methods. This allows the
glue methods defined in a class to override methods with the same name provided
by the used traits.

– Flattening property. A non-overridden method in a trait has the same semantics as
if it were implemented directly in the class using the trait.

– Composition order is irrelevant. All the traits have the same precedence, and hence
conflicting trait methods must be explicitly disambiguated.

With this approach, classes retain their primary role as generators of instances,
whereas traits are purely behavioural units of reuse. As with mixins, classes are or-
ganized in a single inheritance hierarchy, thus avoiding the key problems of multiple
inheritance, but the incremental extensions that classes introduce to their superclasses
are specified using one or more traits. In contrast to mixins, several traits can be applied
to a class in a single operation: trait composition is unordered. Instead of the trait com-
position resulting implicitly from the order in which traits are composed (as is the case
with mixins), it is fully under the control of the composing class.

2.3 Conflict resolution

While composing traits, method conflicts may arise. A conflict arises if we combine
two or more traits that provide identically named methods that do not originate from
the same trait. Conflicts are resolved by implementing a method at the level of the class
that overrides the conflicting methods, or by excluding a method from all but one trait.
In addition traits allow method aliasing; this makes it possible for the programmer to
introduce an additional name for a method provided by a trait. The new name is used
to obtain access to a method that would otherwise be unreachable because it has been
overridden [DNS+06].

In Figure 1, methods in TSyncReadWrite and in TStream are used by Sync-
Stream. The trait composition associated to SyncStream is:

TSyncReadWrite@{hashFromSync→hash} + TStream@{hashFromStream→hash}

This means that SyncStream is composed of (i) the trait TSyncReadWrite for
which the method hash is aliased to hashFromSync and (ii) the trait TStream
for which the method hash is aliased to hashFromStream.

2.4 Method composition operators

The semantics of traits composition is based on four operators: sum, overriding, exclu-
sion and aliasing [DNS+06].

The sum trait TSyncReadWrite + TStream contains all of the non-conflicting meth-
ods of TSyncReadWrite and TStream. If there is a method conflict, that is, if TSyn-
cReadWrite and TStream both define a method with the same name, then in TSyn-
cReadWrite + TStream that name is bound to a distinguished conflict method. The +
operator is associative and commutative.
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The overriding operator constructs a new composition trait by extending an existing
trait composition with some explicit local definitions. For instance, SyncStream over-
rides the method hash obtained from its trait composition. This can also be done with
methods, as we will discuss in more detail later.

A trait can be constructed by excluding methods from an existing trait using the
exclusion operator −. Thus, for instance, TStream − {read, write} has a single method
hash. Exclusion is used to avoid conflicts, or if one needs to reuse a trait that is “too
big” for one’s application.

The method aliasing operator @ creates a new trait by providing an additional name
for an existing method. For example, if TStream is a trait that defines read, write and
hash, then TStream @ {hashFromStream→hash} is a trait that defines read, write, hash
and hashFromStream. The additional method hashFromStream has the same body as
the method hash. Aliases are used to make conflicting methods available under another
name, perhaps to meet the requirements of some other trait, or to avoid overriding. Note
that because the body of the aliased method is not changed in any way, so an alias to a
recursive method is not recursive.

3 Limitations of stateless traits

Traits support the reuse of coherent groups of methods by otherwise independent classes
[DNS+06]. Traits can be composed out of other traits. As a consequence they serve well
as a medium for structuring code. Unfortunately stateless traits necessarily encode de-
pendency on state in terms of required methods (i.e., accessors). In essence, traits are
necessarily incomplete since virtually any useful trait will be forced to define required
accessors. This means that the composing class must define the missing instance vari-
ables and accessors.

The incompleteness of traits results in a number of annoying limitations, namely:
(i) trait reusability is impacted because the required interface is typically cluttered with
uninteresting required accessors, (ii) client classes are forced to implement boilerplate
glue code, (iii) the introduction of new state in a trait propagates required accessors to
all client classes, and (iv) public accessors break encapsulation of the client class.

Although these annoyances can be largely addressed by proper tool support, they
disturb the appeal of traits as a clean, lightweight mechanism for composing classes
from reusable components. A proper understanding of these limitations is a prerequisite
to entertaining any proposal for a more general approach.

3.1 Limited reusability

The fact that a stateless trait is forced to encode state in terms of required accessors
means that it cannot be composed “off-the-shelf” without some additional action. Vir-
tually every useful trait is incomplete, even though the missing part can be trivially
fulfilled.

What’s worse, however, is the fact that the required interface of a trait is cluttered
with dependencies on uninteresting required accessors, rather than focussing attention
on the non-trivial hook methods that clients must implement.
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TSyncReadWrite
lockinitialize
syncRead
syncWrite

read
write
lock:
lock

SyncFile
lock
lock:
lock
read
write

SyncStream
lock
lock:
lock
read
write

SyncSocket
lock
lock:
lock
read
write

syncRead
    | value |
    self lock acquire.
    value := self read.
    self lock release.
    ^ value

syncWrite
    | value |
    self lock acquire.
    value := self write.
    self lock release.
    ^ value

Duplicated code

Use of trait

initialize
    super initialize.
    self lock: Lock new

Fig. 2. The lock variable, the lock and lock: methods are duplicated among trait TSyn-
cReadWrite users.

Although this problem can be partially alleviated with proper tool support that dis-
tinguishes the uninteresting required accessors from the other required methods, the
fact remains that traits with required accessors can never be reused off-the-shelf with-
out additional action by the ultimate client class.

3.2 Boilerplate glue code

The necessary additional client action consists essentially in the generation of boil-
erplate glue code to inject the missing instance variables, accessors and initialization
code. Clearly this boilerplate code must be generated for each and every client class.
In the most straightforward approach, this will lead to the kind of duplicated code that
traits were intended to avoid.

Figure 2 illustrates such a situation where the trait TSyncReadWrite needs to access
a lock. This lock variable, the lock accessor and the lock: mutator have to be duplicated
in SyncFile, SyncStream and SyncSocket.

Once again, to avoid this situation, tool support would be required (i) to automat-
ically generate the required instance variables and accessors, and (ii) to generate the
code in such a way as to avoid actual duplication.

Another unpleasant side effect of the need for boilerplate glue code is the emer-
gence of “shell classes” consisting of nothing but glue code. In the Smalltalk hierarchy
refactored using stateless traits [BSD03], we note that 24% (7 out of 29) of the classes
in the hierarchy refactored with traits are pure shell classes.
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3.3 Propagation of required accessors

If a trait implementation evolves and requires new variables, it may impact all the
classes that use it, even if the interface remains untouched. For instance, if the im-
plementation of the trait TSyncReadWrite evolves and requires a new variable number-
Waiting intended to give the number of clients waiting for the lock, then all the classes
using this trait are impacted, even though the public interface does not change.

Required accessors are propagated and accumulated from trait to trait, therefore
when a class is composed of deeply composed traits, a large number of accessors may
need to be resolved. When a new state dependency is introduced in a deeply nested
trait, required accessors can be propagated to a large number of client classes. Again,
proper tool support can largely mitigate the consequences of such changes, but a more
satisfactory solution would be welcome.

3.4 Violation of encapsulation

Stateless traits violate encapsulation in two ways. First of all, stateless traits unneces-
sarily expose information about their internal representation, thus muddying their in-
terface. A stateless trait exposes every part of its needed representation as a required
accessor, even if this information is of no interest to its clients. Encapsulation would
be better served if traits resembled more closely abstract classes, where only abstract
methods are explicitly declared as being the responsibility of the client subclass. By the
same token, a client class using a trait should only see those required methods that are
truly its responsibility to implement, and no others.

The second violation is about visibility. In Smalltalk, instance variables are always
private. Access can be granted to other objects by providing public accessors. But if
traits require accessors, then classes using these traits must provide public accessors to
the missing state, even if this is not desired.

In principle, this problem could be somewhat mitigated in Java-like languages by
including visibility modifiers for stateless traits in Java-like languages. A trait could
then require a private or protected accessor for missing state. The client class could
then supply these accessors without violating encapsulation (and optionally relaxing the
required modifier). This solution, however, would not solve the problem for Smalltalk-
like languages in which all methods are public, and may only be marked as “private”
by convention (i.e., by placing such methods in a category named “private”).

4 Stateful traits: reconciling traits and state

We now present stateful traits as our solution to the limitations of stateless traits. Al-
though it may seem that adding instance variables to traits would represent a trivial
extension, in fact there are a number of issues that need to be resolved. Briefly, our
solution addresses the following concerns:

– Stateless traits should be a special case of stateful traits. The original semantics of
stateless traits (and the advantages of that solution) should not be impacted.
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– Any extension should be syntactically and semantically minimal. We seek a simple
solution.

– We should address the limitations listed in Section 3. In particular, it should be
possible to express complete traits. Only methods that are conceptually the respon-
sibility of client classes should be listed as required methods.

– The solution should offer sensible default semantics for trait usage, thus enabling
black-box usage.

– Consistent with the guiding principle of stateless traits, the client class should retain
control over the composition, in particular over the policy for resolving conflicts. A
degree of white-box usage is therefore also supported, where needed.

– As with stateless traits, we seek to avoid fragility with respect to change. Changes
to the representation of a trait should normally not affect its clients.

– The solution should be largely language independent. We do not depend on obscure
or exotic language features, so the approach should easily apply to most object-
oriented languages.

The solution we present extends traits to possibly include instance variables. In a
nutshell, there are three aspects to our approach:

1. Instance variables are, by default, private to the scope of the trait that defines them.
2. The client of a trait, i.e., a class or a composite trait, may access selected variables

of that trait, mapping those variables to possibly new names. The new names are
private to the scope of the client.

3. The client of a composite trait may merge variables of the traits it uses by mapping
them to a common name. The new name is private to the scope of the client.

In the following subsections we provide details of the stateful traits model.

4.1 Stateful trait definition

A stateful trait extends a stateless trait by including private instance variables. A stateful
trait therefore consists of a group of public methods and private instance variables, and
possibly a specification of some additional required methods to be implemented by
clients.

Methods. Methods defined in a trait are visible to any other trait with which it is com-
posed. Because methods are public, conflicts may occur when traits are composed.
Method conflicts for stateful traits are resolved in the same way as with stateless
traits.

Variables. By default, variables are private to the trait that defines them. Because vari-
ables are private, conflicts between variables cannot occur when traits are com-
posed. If, for example, traits T1 and T2 each define a variable x, then the composi-
tion of T1 + T2 does not yield a variable conflict. Variables are only visible to the
trait that defines them, unless access is widened by the composing client trait or
class with the @@ variable access operator.
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SyncStream

isBusy
hash

TSyncReadWrite
lock
initialize
syncRead
syncWrite
hash

read
write

@{hashFromSync -> hash}
@@{syncLock -> lock}

TStream

read
write
hash

@{hashFromStream -> hash}

syncRead
    | value |
    lock acquire.
    value := self read.
    lock release.
    ^ value

syncWrite
    | value |
    lock acquire.
    value := self write.
    lock release.
    ^ value

isBusy
    ^ syncLock isAcquired

hash 
    ^ self hashFromSync
             bitAnd: self hashFromStream

initialize
    super initialize.
    lock := Lock new

Uses trait

Trait Name
provided 
methods

required
methods

Fig. 3. The class SyncStream is composed of the stateful traits TStream and TSyn-
cReadWrite.

Figure 3 shows how the situation presented in Figure 1 is reimplemented using state-
ful traits. The class SyncStream is composed of the traits TStream and TSyncRead-
Write. The trait TSyncReadWrite defines the variable lock, three methods syncRead,
syncWrite and hash, and requires methods read and write.

Note that, in order to include state in traits, we must extend the mechanism for
defining traits. In the Smalltalk implementation, this is achieved by extending the mes-
sage sent to the Trait class with a new keyword argument to represent the used instance
variables. For instance, we can now define the TSyncReadWrite trait as follows:

Trait named: #TSyncReadWrite
uses: {}
instVarNames: ’lock’

The trait TSyncReadWrite is not composed of any other traits and it defines a vari-
able lock. The uses: clause specifies the trait composition (empty in this case), and
instVarNames: lists the variables defined in the trait (i.e., the variable, lock). The inter-
face for defining a class as composition of traits is the same as with stateless traits. The
only difference is that the trait composition expression supports an additional operator
(@@) for granting access to variables of the used traits. Here we see how SyncStream
is composed from the traits TSyncReadWrite and TStream:

Object subclass: #SyncStream
uses: TSyncReadWrite @ {#hashFromSync→#hash}

@@ {syncLock→lock}
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+ TStream @ {#hashFromStream→#hash}
instVarNames: ”
....

In this example, access is granted to the lock variable of the TSyncReadWrite trait
under the new name syncLock. As we shall now see, the @@ operator provides a fine
degree of control over the visibility of trait variables.

4.2 Variable access

By default, a variable is private to the trait that defines it. However, the variable access
operator (@@) allows variables to be accessed from clients under a possibly new name,
and possibly merged with other variables.

If T is a trait that defines a (private) instance variable x, then T@@{y→x} represents
a new trait in which the variable x can be accessed from its client scope under the
name y. x and y represent the same variable, but the name x is restricted to the scope
of t whereas the name y is visible to the enclosing client scope (i.e., the composing
classscope). For instance, in the following composition:

TSyncReadWrite@{hashFromSync→hash}@@{syncLock→lock}
the variable lock defined in TSyncReadWrite is accessible to the class SyncStream using
that trait under the name syncLock. (Note that renaming is often needed to distinguish
similarly named variables coming from different used traits.)

In a trait variable composition, three situations can arise: (i) variables remain private
(i.e., the variable access operator is not used), (ii) access to a private variable is granted,
and (iii) variables are merged.

T1

getXT1
setXT1:

x

T2

getXT2
setXT2:

x

C

getX
setX:

x

c := C new.
c setXT1: 1.
c setXT2: 2.
c setX: 3.

{ Now:
  c getXT1 = 1
  c getXT2 = 2
  c getX = 3 }

Fig. 4. Keeping variables private: while composed, variables are kept separate. Traits
T1, T2 and C have their own variable x.

Keeping variables private. By default, instance variables are private to their trait. If
the scope of variables is not broadened at composition time using the variable access
operator, conflicts do not occur and the traits do not share state. Figure 4 shows a case
where T1 and T2 are composed without variable access being broadened. Each of these
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two traits defines a variable x. In addition they each define accessor methods. C also
defines a variable x and two methods getX and setX:. T1, T2 and C each have their own
variable x as shown in Figure 4.

The trait composition of C is: T1 + T2. Note that if methods would conflict we would
use the default trait strategy to resolve them by locally redefining them in C and that
method aliasing could be used to access the overridden methods.

This form of composition is close to the module composition approach proposed in
Jigsaw [Bra92] and supports a black-box reuse scenario.

@@{ xFromT1 -> x }
T1

getXT1
setXT1:

x

@@{ xFromT2 -> x }

c := C new.
c setXT1: 1.
c setXT2: 2.

{ Now:
  c getXT1 = 1
  c getXT2 = 2
  c sum = 3 }

sum
    ^ xFromT1 + xFromT2

T2

getXT2
setXT2:

x

sum

C

Fig. 5. Granting access to variables: x of T1 and T2 are given access in C.

Granting variable access. Figure 5 shows how the client class C gains access to the
private x variables of traits T1 and T2 by using the variable access operator @@. Be-
cause two variables cannot have the same name within a given scope, these variables
have to be renamed. The variable x from T1 is accessible as xFromT1 and x from T2 is
accessible as xFromT2. C also defines a method sum that returns the value xFromT1 +
xFromT2. The trait composition of C is:

T1 @@ {xFromT1→x}
+ T2 @@ {xFromT2→x}

C can therefore build functionality on top of the traits that it uses, without exposing
any details to the outside. Note that methods in the trait continue to use the ‘internal’
name of the variable as defined in the trait. The name given in the variable access
operator @@ is only to be used in the client classes. This is similar to the method
aliasing operator @.

Merging variables. Variables from several traits can be merged when they are com-
posed by using the variable access operator to map multiple variables to a common
name within the client scope. This is illustrated in Figure 6.

Both T1 and T2 give access to their instance variables x and y under the name w.
This means that w is shared between all three traits. This is the reason why sending
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T1

getX
setX:

x

T2

getY
setY:

y

C

getW
setW:

@@{w -> x}

@@{w -> y}

c := C new.
c setW: 3.

{ Now:
  c getX = 3
  c getY = 3
  c getW = 3 }

Fig. 6. Merging variables: variables x and y are merged in C under the name w.

getX, getY, or getW to an instance of a class implementing C returns the same result, 3.
The trait composition of C is:

T1 @@ {w→x} + T2 @@ {w→y}

Note that merging is fully under the control of the client class or trait. There can be
no accidental name capture since visibility of instance variables is never propagated to
an enclosing scope. Variable name conflicts cannot arise, since variables are private to
traits unless they are explicitly accessed by clients, and variables are merged when they
are mapped to common names.

The reader might well ask, what happens if the client also defines an instance vari-
able whose name happens to match the name under which a used trait’s variable is
accessed? Suppose, for example, that C in Figure 6 attempts to additionally define an
instance variable called w. We consider this to be an error. This situation cannot possi-
bly arise as a side effect of changing the definition of a used trait since the client has
full control over the names of instance variables accessible within its scope. As a con-
sequence this cannot be a case of accidental name capture, and can only be interpreted
as an error.

4.3 Requirements revisited

Let us briefly reconsider our requirements. First, stateful traits do not change the se-
mantics of stateless traits. Stateless traits are purely a special case of stateful traits.
Syntactically and semantically, stateful traits represent only a minor extension of state-
less traits.

Stateful traits address the issues raised in Section 3. In particular, (i) there is no
longer a need to clutter trait interfaces with required accessors, (ii) clients no longer
need to provide boilerplate instance variables and accessors, (iii) the introduction of
state in traits remains private to that trait, and (iv) no public accessors need be intro-
duced in client classes. As a consequence, it is possible to define “complete” traits that
require no methods, even though they make use of state.

The default semantics of stateful traits enables black-box usage since no representa-
tion is exposed, and instance variables by default cannot clash with those of the client or
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of other used traits. Nevertheless, the client retains control of the composition, and can
gain access to the instance variables of used traits. In particular, the client may merge
variables of traits, if this is desired.

Since the client retains full control of the composition, changes to the definition of
a trait cannot propagate beyond its direct clients. There can be no implicit side effects.

Finally, the approach is largely language-independent. In particular, there are no
assumptions that the host language provide either access modifiers for instance variables
or exotic scoping mechanisms.

5 Implementation

We have implemented a prototype of stateful traits as an extension of our Smalltalk-
based implementation of stateless traits.5

As with stateless traits, method composition and reuse for stateful traits do not incur
any overhead since method pointers are shared between method dictionaries of different
traits and classes. This takes advantage of the fact that methods are looked up by name
in the dictionary rather than accessed by index and offset, as is done to access state in
most object-oriented programming languages. However, by adding state to traits, we
have to find a solution to the fact that the access to instance variables cannot be linear
(i.e., based on offsets) since the same trait methods can be applied to different ob-
jects [BGG+02]. A linear structure for state representation cannot be always obtained
from a composition graph. This is a common problem of languages that support mul-
tiple inheritance. We evaluated two implementations: copy-down and changing object
internal representation. The following section illustrates the problem.

5.1 The classical problem of state linearization

As pointed out by Bracha [Bra92, Chapter 7], in implementations of single inheritance
languages such as Modula-3 [CDG+92], and more recently in the Jikes Research Vir-
tual Machine [Jik], the notion of virtual functions is supported by associating to each
class a table whose entries are the addresses of the methods defined for instances of
that class. Each instance of a class contains a reference to the class method table. It
is through this reference that the appropriate method to be invoked on an instance is
located. Under multiple inheritance, this technique must be modified, since the super-
classes of a class no longer share a common prefix.

Since a stateful trait may have a private state, and may be used in multiple contexts,
it is not possible to have a static and linear instance variable offset list shared by all the
methods of the trait and its users.

The top half of Figure 7 shows a trait T3 using T1 and a trait T4 using T1 and T2.
T1 defines 3 variables x, y, z and T2 defines 2 variables v, x. The bottom part shows a
possible corresponding representation in memory that uses offsets. Assuming that we
start the indexing at zero, T2.v has zero for index, and T2.x has one. However, in T4
the same two variables might have indexes three and four.6 So static indexes used in

5 See www.iam.unibe.ch/∼scg/Research/Traits
6 We assume that the slots of T2 are added after the ones of T1. In the opposite case the argument

holds for the variables of T1.

http://www.iam.unibe.ch/~scg/Research/Traits
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T2
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T1
x, y, z
getX

T3

T4

Memory layout
Model

T1

T1.x
T1.y
T1.z

T2

T2.v
T2.x

T3

T1.x
T1.y
T1.z

T4

T1.x
T1.y
T1.z
T2.v
T2.x

Variable 
offsets

0
1
2
3
4

getX
   ^ x

getV
     ^ v

Fig. 7. Problem of combining multiple traits: variable’s offset is not preserved.

methods from T1 or T2 are no longer valid. Note that this problem occurs regardless of
the composition of trait T4 out of traits T1 and T2 (whether it needs access to variables,
whether or not it merges variable x, . . . ). The problem is due to the linear representation
of variables in the underlying object model.

5.2 Three approaches to state linearization

Three different approaches are available to represent non linear state. C++ uses intra-
object pointers [SG99]. Strongtalk [BGG+02] uses a copy-down technique that dupli-
cates methods that need to access variable with different offset. A third approach, as
done in Python [Pyt] for example, is to keep variables in a dictionary and look them up,
similar to what is done for methods.

We implemented the last two approaches for Smalltalk so that we could compare
them for our prototype implementation. We did not implement C++’s solution because
it would require significant effort to change the object representation to be compatible.

5.3 Virtual base pointers in C++

In C++ [SE90], an instance of a class C is represented by concatenating the repre-
sentations of superclasses of C. Such instance is therefore composed of subobjects,
where each subobject corresponds to a particular superclass. Each subobject has its
own pointer to a suitable method table. In this case, the representation of a class is not
a prefix of the representations of all of its subclasses.

Each subobject begins at a different offset from the beginning of the complete C
object. These offsets, called virtual base pointers [SG99], can be computed statically.
This technique was pioneered by Krogdahl [Kro85, Bra92].

For instance, let’s consider the situation in C++ illustrated in Figure 8. The upper
part of the figure shows a classical diamond diagram using virtual inheritance (i.e.,B
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B
x: int
getX(): int

C
y: int
getY(): int

Memory layout
Model using virtual inheritance

D
z: int
getZ(): int

D
w

x

getW()

getX()

y
getY()

A

B

C

A
w: int
getW(): int

getZ()
z

D

VTables

Fig. 8. Multiple virtual inheritance in C++.

and C inherit virtually A, therefore the w variable is shared between B and C). The
lower part shows the memory layout of an instance of D. This instance is composed
of 4 “sub-parts” corresponding to the superclasses A, B, C and D. Note that C’s part,
instead of assuming that the state it inherits from A lies immediately “above” its own
state, accesses the inherited state via the virtual base pointer. In this way the B and C
parts of the D instance can share the same common state from A.

We did not attempt to implement this strategy in our Smalltalk prototype, as it would
have required a deep modification to the Smalltalk VM. Since Smalltalk supports only
single inheritance, object layout is fundamentally simpler. Accommodating virtual base
pointers in the layout of an object would also entail changes to the method lookup
algorithm.

5.4 Object state as a dictionary

An alternative implementation approach is to introduce instance variable accesses based
on names and not on offsets. The variable layout has the semantics of a hash table, rather
than that of an array. For a given variable, its offset is not constant anymore as shown
by Figure 9. The state of an object is implemented by a hash table in which multiple
keys may map to the same value. For instance, variable y of T1 and variable v of T2 are
merged in T4. Therefore, an instance of T4 has two variables (keys), T1.y and T2.v, that
actually point to the same value.

In Python [Pyt] the state of an object is represented by a dictionary. An expression
such as self.name = value is translated into self. dict [name] = value, where dict is a
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T1
x, y, z
getX

T2
v, x
getV

T4

Memory layout
Model

T4

getX
    ^ x

getV
    ^ v

@@ { v -> y }

@@ { v -> v }

T1.x val1
T1.y, T2.v val2

T1.z val3
T2.x val4

Fig. 9. Structure of objects is similar to a hash table with multiple keys for a same entry.

primitive to access the dictionary of an object. A variable is declared and defined simply
by being used in Python. For instance, affecting a value to an non-existing variable has
the effect to create a new variable. Representing the state of an object with a dictionary
is a way to deal with the linearization problem of multiple inheritance.

5.5 Copy down methods

Strongtalk [BGG+02] is a high performance Smalltalk with a mixin-aware virtual ma-
chine. A mixin contains description of its instance variables and class variables, and
a method dictionary where all the code is initially stored. One of the problems when
sharing code among mixin application is that the physical layout of instances varies
between mixin applications. This problem is addressed by the copy down mechanism:
(i) Methods that do not access instance variables or super are shared in the mixin. (ii)
Methods that access instance variables may have to be copied if the variable layout
differs from that of other users of the mixin.

The copy down mechanism favors execution speed over memory consumption.
There is no extra overhead to access variables. Variables are linearly ordered, and meth-
ods that access them are duplicated and adjusted with proper offset access. Moreover,
in Strongtalk, only accessors are allowed to touch instance variables directly at the byte
code level. The space overhead of copy-down is therefore minimal. Effective inlining
by the VM takes care of the rest, except for accessors which impose no space overhead.

The dictionary-based approach has the advantage that it more directly reflects the
semantics of stateful traits, and is therefore attractive for a prototype implementation.
Practical performance could however become problematic, even with optimized dic-
tionary implementations like in Python [Pyt]. The copy-down approach, however, is
clearly the better approach for a fast implementation. Therefore we decided to adopt it
in our implementation of stateful traits in Squeak Smalltalk.
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5.6 Benchmarks

As mentioned in the previous section, we adopted the copy-down technique for our
stateful traits implementation. In this section we compare the performance of our state-
ful traits prototype implementation with that of both regular Squeak without traits and
that of the stateless traits implementation. We measured the performance of the follow-
ing two case studies:

– the SyncStream example introduced in the beginning of the paper. The experiment
consisted of writing and reading large objects in a stream 1000 times. This example
was chosen to evaluate whether state is accessed efficiently.

– a link checker application that parses HTML pages to check whether URLs on a
webpage are reachable or not. This entails parsing large HTML files into a tree
representation and running visitors over these trees. This case study was chosen in
order to have a more balanced example that consists of accessing methods as well
as state.

For both case studies we compared the stateful implementation with the stateless
traits implementation and with reular Squeak. The results are shown in Table 1.

Without
traits

Stateless
traits

Stateful traits

SyncStream 13912 13913 13912
LinkChecker 2564 2563 2564

Table 1. Execution times of two cases for three implementations: without traits, with
stateless traits and with stateful traits (times in milliseconds).

As can be seen from the table, no overhead is introduced by accessing instance
variables defined in traits and used in clients. This was to be expected: the access is
still offset-based and almost no differences can be noticed. Regarding overall execution
speed, we see that there is essentially no difference between the three implementations.
This result is consistent with previous experience using traits, and was to be expected
since we did not change the parts of the implementation dealing with methods.

6 Refactoring the Smalltalk collection hierarchy

We have carried out a case study in which we used stateful traits to refactor the Smalltalk
collection hierarchy. We have previously used stateless traits to refactor the same hier-
archy [BSD03], and we now compare the results of the two refactorings. The stateless
trait-based Smalltalk collection hierarchy consists of 29 classes which are built from a
total of 52 traits. Among these 29 classes there are numerous classes, which we call
shell classes, that only declare variables and define their associated accessors. Seven
classes of the 29 classes (24%) are shell classes (SkipList, PluggableSet, LinkedList,
OrderedCollection, Heap, Text and Dictionary).
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The refactoring with stateful traits results in a redistribution of the variables defined
(in classes) to the traits that effectively need and use them. Another consequence is
the decrease of number of required methods and a better encapsulation of the traits
behaviour and internal representation.

TSortBlockBased
locksortBlock: privateSortBlock:

sortBlock

Heap
array
tally
sortBlock
array
array:
tally
tally:
privateSortBlock:
sortBlock

THeapImpl
lockadd:
copy
grow
removeAt:
...

array
array:
tally
tally:
privateSortBlock:
sortBlock

TExtensibleSeq
lock... ...

TArrayBased
locksize
capacity
...

array
array:
tally
tally:

TExtensibleInst
lock... ...

sortBlock: aBlock
    ...
    self privateSortBlock: aBlock
    ...

size
    ^ self tally 

capacity
    ^ self array size 

Fig. 10. Fragment of the stateless trait Smalltalk collection hierarchy. The class Heap
defines variables used by TArrayBased and TSortBlockBased.

Figure 10 shows a typical case arising with stateless traits where the class Heap must
define 3 variables (array, tally, and sortBlock). The behaviour of this class is limited
to the initialization of objects and providing accessors for each of these variables. It
uses the trait THeapImpl, which requires all these accessors. These requirements are
necessary for THeapImpl since it is composed of TArrayBased and TSortBlockBased
which require such state. These two traits need access to the state defined in Heap.

Figure 11 shows how Heap is refactored to use stateful traits. All variables have
been moved to the places where they were needed, leading to the result that Heap be-
comes empty. The variables previously defined in Heap are rather defined in the traits
that effectively require them. TArrayBased defines two variables array and tally, there-
fore it does not need to specify any accessors as required methods. It is the same situa-
tion with TSortBlockBased and the variable sortBlock.

If we are sure that THeapImpl is not used by any other class or trait, then we
can further simplify this new composition by moving the implementation of the trait
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Heap

THeapImpl

add:
copy
grow
removeAt:
...

TExtensibleSeq

... ...

TArrayBased
array
tally
size
capacity
...

TExtensibleInst

... ...

TSortBlockBased
sortBlock
sortBlock:
...

sortBlock: aBlock
    ...
    sortBlock := aBlock.
    ...

size
    ^ tally 

capacity
    ^ array size 

Fig. 11. Refactoring of the class Heap with stateful traits but keeping the trait
THeapImpl.

TExtensibleSeq

... ...

TArrayBased
array
tally
size
capacity
...

TExtensibleInst

... ...

TSortBlockBased
sortBlock
sortBlock:
...

sortBlock: aBlock
    ...
    sortBlock := aBlock.
    ...

size
    ^ tally 

capacity
    ^ array size 

Heap

add:
copy
grow
removeAt:
...

Fig. 12. Refactoring of the class Heap with stateful traits removing the trait THeapImpl.
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THeapImpl to Heap and eliminating THeapImpl. Figure 12 shows the resulting hierar-
chy. The class Heap defines methods like add: and copy.

Refactoring the Smalltalk class hierarchy using stateful traits yields multiple bene-
fits:

– Encapsulation is preserved: Internal representation is not unnecessarily revealed to
client classes.

– Fewer method definitions: Unnecessary variable accessors are avoided. Accessors
that were defined in Heap are removed.

– Fewer method requirements: Since variables are defined in the traits that used them,
we avoid specifying required accessors. Variable accessors for THeapImpl, TArray-
Based, and TSortBlockBased are not required anymore. There is no propagation of
required methods due to state usage.

7 Discussion

7.1 Flattening property

In the original stateless trait model [DNS+06], trait composition respects the flattening
property, which states that a non-overridden method in a trait has the same semantics
as if it were implemented directly in the class. This implies that traits can be inlined to
give an equivalent class definition that does not use traits. It is natural to ask whether
such an important property is preserved with stateful traits. In short, the answer is yes,
though trait variables may have to be alpha-renamed to avoid name clashes.

In order to preserve the flattening property with stateful traits, we must ensure that
instance variables introduced by traits remain private to the scope of that trait’s methods,
even when their scope is broadened to that of the composing class. This can be done in a
variety of ways, depending on the scoping mechanisms provided by the host language.
Semantically, however, the simplest approach is to alpha-rename the private instance
variables of the trait to names that are unique in the client’s scope. Technically, this
could be achieved by the common technique of name-mangling, i.e., by prepending the
trait’s name to the variable’s name when inserting it in the client’s scope. Renaming and
merging are also consistent with flattening, since variables can simply be renamed or
merged in the client’s scope.

7.2 Limiting change impact

Any approach to composing software is bound to be fragile with respect to certain kinds
of change: if a feature that is used by several clients changes, the change will affect the
clients. Extending a trait so that it provides additional methods may well affect clients
by introducing new conflicts. However, the design of trait composition based on explicit
resolution ensures that such changes cannot lead to implicit and unexpected changes
in the behaviour of direct or indirect clients. A direct client can generally resolve a
conflict without changing or introducing any other traits, so no ripple effect will occur
[DNS+06].
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In stateful traits adding a variable to a trait does not affect clients because variables
are private. Removing or renaming a variable may require its direct clients to be adapted
only if this variable is explicitly accessed by these clients. However, once the direct
clients have been adapted, no ripple effect can occur in indirect clients. By avoiding
required method propagation, stateful traits limit the effect of changes.

7.3 About variable access

By default a trait variable is private, thereby enforcing black-box reuse. At the same
time we offer an operator enabling the direct client to access the private variables of
the trait. This may appear to be a violation of encapsulation [Sny86]. However this
approach is consistent with our vision that traits serve as building blocks for composing
classes, whether in a black-box or a white-box fashion. Furthermore it is consistent with
the principle that the client of a trait is in control of the composition. It is precisely this
fact that ensures that the effects of changes do not propagate to remote corners of the
class hierarchy.

8 Related work

We briefly review some of the numerous research activities that are relevant to stateful
traits.

Self. The prototype based language Self [US87] does not have a notion of class. Con-
ceptually, each object defines its own format, methods, and delegation relations. Objects
are derived from other objects by cloning and modification. Objects can have one or
more parent objects; messages that are not found in the object are looked for and dele-
gated to a parent object. Self is based around the notion of slots, which unifies methods
and instance variables.

Self uses trait objects to factor out common features [UCCH91]. Nothing prevents
a trait object from also containing state. Similar to the notion of traits presented here,
these trait objects are essentially groups of methods. But unlike our traits, Self’s trait
objects do not support specific composition operators; instead, they are used as ordinary
parent objects.

Interfaces with default implementation. Mohnen [Moh02] proposed an extension of
Java in which interfaces can be equipped with a set of default implementations of meth-
ods. As such, classes that implement such an interface can explicitly state that they
want to use the default implementation offered by that interface (if any). If more than
one interface mentions the same method, a method body must be provided. Conflicts are
flagged automatically, but require the developer to resolve them manually. State cannot
be associated with the interfaces. Scala [sca] also supports traits i.e., partially defined
interfaces. While the composition of traits in Scala does not follow exactly the one in
stateless traits, traits in Scala cannot define state.
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Mixins. Mixins [BC90] use the ordinary single inheritance operator to extend various
parent classes with a bundled set of features. Although this inheritance operator is well-
suited for deriving new classes from existing ones, it is not necessarily appropriate for
composing reusable building blocks. Specifically, because mixin composition is imple-
mented using single inheritance, mixins are composed linearly. This gives rise to several
problems. First, a suitable total ordering of features may be difficult to find, or may not
even exist. Second,“glue code” that exploits or adapts the linear composition may be
dispersed throughout the class hierarchy. Third, the resulting class hierarchies are often
fragile with respect to change, so that conceptually simple changes may impact many
parts of the hierarchy [DNS+06].

Eiffel. Eiffel [Mey92] is a pure object-oriented language that supports multiple inher-
itance. Features, i.e., method or instance variables, may be multiply inherited along
different paths. Eiffel provides the programmer mechanisms that offer a fine degree of
control over whether such features are shared or replicated. In particular, features may
be renamed by the inheriting class. It is also possible to select a particular feature in case
of naming conflicts. Selecting a feature means that from the context of the composing
subclass, the selected feature takes precedence over the possibly conflicting ones.

Despite the similarities between the inheritance scheme in Eiffel and the composi-
tion scheme of stateful traits, there are some significant differences:

– Renaming vs. aliasing – In Eiffel, when a subclass is created, inherited features can
be renamed. Renaming a feature has the same effect as (i) giving a new name to
this feature and (ii) changing all the references to this feature. This implies a kind
of mapping to be performed when a renamed method is accessed through the static
type of the superclass.

For instance, let’s assume a class Component defines a method update. A subclass
GraphicalComponent renames update into repaint, and redefines this repaint with a
new implementation. The following code illustrates this situation:

class Component
feature

update is
do

print (’1’)
end

end

class GraphicalComponent
inherit

Component
rename

update as repaint
redefine

repaint
end

repaint is
do

print (’2’)
end

end

In essence, the method repaint acts as an override of update. It means that if up-
date is sent to an instance of GraphicalComponent, then repaint is called. This is
illustrated in the following example:
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f (c: Component) is
do

c.update
end

f (create{GraphicalComponent})
==> 2

This is the way Eiffel preserves polymorphism while supporting renaming.
In stateful traits, aliasing a method or granting access to a variable assigns a new
name to it. The method or the variable can therefore still be invoked or accessed
through its original name.

– Merging variables – In contrast to to stateful traits, variables can be merged in
Eiffel only if they provide from a common superclass. In stateful traits, variables
provided by two traits can be merged regardless of how these traits are formed.

Jigsaw. Jigsaw [Bra92] has a module system in which a module is a self-referential
scope that binds names to values (i.e., constant and functions). A module acts as a class
(object generator) and as a coarse-grained structural software unit. Modules can be
nested, therefore a module can define a set of classes. A set of operators is provided to
compose modules. These operators are instantiation, merge, override, rename, restrict,
and freeze.

Although there are some differences between the definition of a Jigsaw module and
stateful traits, for instance with the rename operator, the more significant differences
are in motivation and setting. Jigsaw is a framework for defining modular languages.
Jigsaw supports full renaming, and assigns a semantic interpretation to nesting. In Jig-
saw, a renaming is equivalent to a textual replacement of all occurrences of the attribute.
The rename operator distributes over override. It means that Jigsaw has the following
property:

(m1 rename a to b) override (m2 rename a to b) = (m1 override m2) rename a to b

Traits are intended to supplement existing languages by promoting reuse in the
small, do not declare types, infer their requirements, and do not allow renaming. State-
less traits do not assign any meaning to nesting. Stateful traits are sensitive to nest-
ing only to the extent that instance variables are private to a given scope. The Jigsaw
operation set also aims for completeness, whereas in the design of traits we sacrifice
completeness for simplicity.

A notable difference between Jigsaw and stateful traits is with the merging of vari-
ables. In Jigsaw, a module can have state, however variables cannot be shared between
modules. With stateful traits the same variable can be accessed by the traits that use it.
A Jigsaw module acts as a black-box. A module encapsulates its bindings and cannot
be opened. While we value black-box composition, stateful traits do not take such a
restrictive approach, but rather let the client assume responsibility for the composition,
while being protected from the impact of changes.

It is worth mentioning typing issues raised when implementing Jigsaw. Bracha
[Bra92, Chapter 7] pointed out that the difficulty in implementing inheritance in Jig-
saw (which is operator-based) stems from the interaction between structural subtyping
and the algebraic properties of the inheritance operators (e.g., merge and override).
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A B

C

D

E F

Fig. 13. E and F are structurally equivalent but may have different representations.

For example, let’s consider the following classes A, B, C, D, E and F where C
is a subclass of A and B. E is a subclass of D and C. F is a subclass of D, A and
B. We have C = AB, E = DC and F = DAB where in Cnew = C1C2...Cn the
superclasses of Cnew are denoted Ci. (See Figure 13.) Expanding the definitions of
all names (as dictated by structural typing), one finds that by associativity E = F .
This equivalence dictates that all three classes have the same type, so that they can be
used interchangeably. This in turn requires that all three have the same representation.
However, using the techniques of C++ (Section 5.3), these three classes have different
representations. This problem is avoided in traits where a trait does not define a type.

Cecil. Cecil [Cha92] is a purely object-oriented language that combines a classless ob-
ject model, a kind of dynamic inheritance and an optional static type checking. Cecil’s
static type system distinguishes between subtyping and code inheritance even if the
more common case is when the subtyping hierarchy parallels the inheritance hierarchy.
Cecil supports multiple inheritance. Inheriting from the same ancestor more than once,
whether directly or indirectly, has no effect other than to place the ancestor in relation to
other ancestors: Cecil has no repeated inheritance. Inheritance in Cecil requires a child
to accept all of the fields and methods defined in the parents. These fields and methods
may be overridden in the child, but facilities such as excluding fields or methods from
the parents or renaming them as part of the inheritance are not present in Cecil. This is
an important difference with respect to stateful traits.

9 Conclusion

Stateless traits offer a simple compositional approach for structuring object-oriented
programs. A trait is essentially a group of pure methods that serves as a building block
for classes and as a primitive unit of code reuse. However this simple model suffers from
several limitations, in particular (i) trait reusability is impacted because the required
interface is typically cluttered with uninteresting required accessors, (ii) client classes
are forced to implement boilerplate glue code, (iii) the introduction of new state in a
trait propagates required accessors to all client classes, and (iv) public accessors break
encapsulation of the client class.

We have proposed a way to make traits stateful as follows: First, traits can have
private variables. Second, classes or traits composed from traits may use the variable
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access operator to (i) access variables of the used traits, (ii) attribute local names to
those variables, and (iii) merge variables of multiple used traits, when this is desired.
The flattening property can be preserved by alpha-renaming variable names that clash.

Stateful traits offer numerous benefits: There is no unnecessary propagation of re-
quired methods, traits can encapsulate their internal representation, and the client can
identify the essential required methods more clearly. Duplicated boilerplate glue code
is no longer needed. A trait encapsulates its own state, therefore an evolving trait does
not break its clients if its public interface remains unmodified.

Stateful traits represent a relatively modest extension to single-inheritance languages
that enables the expression of classes as compositions of fine-grained, reusable software
components. An open question for further study is whether trait composition can sub-
sume class-based inheritance, leading to a programming language based on composition
rather than inheritance as the primary mechanism for structuring code following Jigsaw
design.
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[NDS06] Oscar Nierstrasz, Stéphane Ducasse, and Nathanael Schärli. Flattening Traits. Journal
of Object Technology, 5(4):129–148, May 2006.

[Pyt] Python. http://www.python.org.
[sca] Scala home page. http://lamp.epfl.ch/scala/.
[SD05] Charles Smith and Sophia Drossopoulou. Chai: Typed traits in Java. In Proceedings

ECOOP 2005, 2005.
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