
BugMaps: A Tool for the
Visual Exploration and Analysis of Bugs

Andre Hora, Nicolas Anquetil,
Stephane Ducasse, Muhammad Bhatti

RMoD Team

INRIA, Lille, France

{firstName.lastName}@inria.fr

Cesar Couto
Department of Computing

CEFET-MG, Belo Horizonte, Brazil

cesarfmc@dcc.ufmg.br

Marco Tulio Valente, Julio Martins
Department of Computer Science

UFMG, Belo Horizonte, Brazil

{mtov,jleandro}@dcc.ufmg.br

Abstract—To harness the complexity of big legacy software,
software engineering tools need more and more information
on these systems. This information may come from analysis
of the source code, study of execution traces, computing of
metrics, etc. One source of information received less attention
than source code: the bugs on the system. Little is known about
the evolutionary behavior, lifetime, distribution, and stability of
bugs. In this paper, we propose to consider bugs as first class
entities and a useful source of information that can answer such
topics. Such analysis is inherently complex, because bugs are
intangible, invisible, and difficult to be traced. Therefore, our
tool extracts information about bugs from bug tracking systems,
link this information to other software artifacts, and explore
interactive visualizations of bugs that we call bug maps.

I. INTRODUCTION

Currently there are a number of tools for software analy-

sis [1], [2], [3]. Such tools use different types of information

about the structure and history of a system. Basically, these

tools are used to analyze software evolution, manage the

quality of the source code, compute metrics, analyze coding

rules, etc. In a general way, these tools help software engineers

to understand large amounts of data that come from software

repositories.

On the other hand, one source of information has been less

explored by existing software analysis tools: the bugs on the

system. Some tools already analyze such information [4], [5],

[6], but little is known about the evolutionary behavior, life-

time, distribution, and stability of bugs. Moreover, reasoning

about bugs is a task inherently complex, because bugs are

intangible, invisible and difficult to be traced. Particularly,

such analysis is complex because it involves: (i) retrieval

of data from bug-tracking and version control platforms; (ii)

mapping of bugs to defects in software modules; and (iii) data

processing to extract and reason about relevant information.

In this paper, we present the BugMaps tool that provides

mechanisms to automate the process of retrieving and parsing

software repositories data, algorithms to map bugs reported

in bug-tracking platforms to defects in the classes of object-

oriented systems and that provides visualizations for decision

support. More specifically, the tool has the following features:

• The tool automatically extracts a time series with number

of defects at the class level from information available in

bug-tracking and version control platforms.

• The tool integrates models extracted from the source code

with the number of defects time series.

• From this integration, the tool provides a set of inter-

active visualizations that supports software developers

and managers in answering questions such as: (a) What

are the modules involved in bug-fixing? (b) What is the

lifetime of a bug? (c) What is the period that a module

has presented more bugs? (d) What modules are stable or

unstable with respect to bugs? (e) What are the modules

whose number of bugs has increased or decreased over

time? (f) What is the total number of bugs of a module?

The paper is organized as follows. In Section 2 we introduce

BugMaps, using illustrative examples extracted from the bugs

reported for the Eclipse JDT system. In Section 3 we discuss

related work, and in Section 4 we conclude the paper.

II. BUGMAPS

Figure 1 shows the architecture of the BugMaps1, which

includes the following components:

1) Mapping Module. This module receives as input the

log files from version control platforms – CVS or SVN

– and the bug reports from bug-tracking platforms – Jira

or Bugzilla. This module maps bugs to defects in classes

and creates the times series number of defects (i.e., for

each class, a time series that provides the number of

defects in a given time frame).

2) Visualization Module. This module receives as input

the series number of defects, the models extracted from

several versions of the source code and the source

code itself. From this information, this module computes

measures on bugs and provides many interactive visual-

izations.

A. Mapping Module

To create the time series of defects, we implemented

an XML parser that reads the information provided by the

CVS/SVN repositories and extracts the developer’s comments

and the changed classes. Then, another XML parser reads

the bug reports available in the Jira/Bugzilla repositories and

collects the date on which each bug was reported and its

1http://rmod.lille.inria.fr/web/pier/software/BugMaps

2012 16th European Conference on Software Maintenance and Reengineering

1534-5351/12 $26.00 © 2012 IEEE

DOI 10.1109/CSMR.2012.68

517

2012 16th European Conference on Software Maintenance and Reengineering

1534-5351/12 $26.00 © 2012 IEEE

DOI 10.1109/CSMR.2012.68

517

2012 16th European Conference on Software Maintenance and Reengineering

1534-5351/12 $26.00 © 2012 IEEE

DOI 10.1109/CSMR.2012.68

523

Fig. 1. BugMaps architecture

identifier. After that, we linked each bug b to the classes

changed to fix b. More details can be checked in [7].

B. Visualization Module

This module receives as input the series of defects, models

of the source code and the source code itself of the system

under analysis. Models of source code are generated using

VerveineJ parser2. Two browsers are then used for analysis,

one to deal with the history of bugs (called history browser,

which receives as input a history model [8]) and other to deal

with a particular snapshot of the system under analysis (called

snapshot browser, which receives as input a snapshot model).

These browsers are implemented in the Moose Platform3.

Figure 2 shows the history browser which is composed

by three panes: visualizations (top left), measures (top right)

and charts (bottom). The charts pane shows the number of

bugs presented in a class/package during its timelife and

the measures pane shows class/package measures, which are

updated according to the selected entity in the visualizations
pane. The visualizations displayed can be swapped using tabs

presented in the top of visualizations pane. The history model

of the source code is a collection of snapshot models, then

from the history browser it is possible to open snapshot

browsers using tabs presented in the top of measures pane.

Figure 3 shows the snapshot browser which is composed

by four panes: visualizations (top left), measures (top right),

source code (bottom left) and charts (bottom right). Measures,

source code and charts panes are also updated according to the

selected entity in the visualizations pane. The visualizations

displayed can be swapped using tabs presented in the top of

visualizations pane.

The next subsections detail the measures and visualizations.

1) Measuring Bugs History: We provide six measures to

summarize the evolution of the bugs in a system. These

measures are instantiation of Evolution of a Version Property, a

generic evolution measure proposed by Girba and Ducasse [8].

2http://www.moosetechnology.org/tools/verveinej
3http://www.moosetechnology.org

Fig. 2. BugMaps: history browser

Fig. 3. BugMaps: snapshot browser

The provided measures rely on a basic metric called

ENOBi, which is defined as the difference in the number

of bugs (NOB) between version i and i−1 of the class C:

ENOBi(C) = NOBi(C)−NOBi−1 (C), for i>1. This basic

metric is used to build six more advanced ones. We first define

each advanced metric, before giving examples and intuition on

their use.

Evolution of Number of Bugs (ENOB). ENOBj..k is the sum

of the number of bugs added or removed from version j to

version k: ENOBj ..k (C) =
∑k

i=j+1 |ENOBi(C)|.
Latest Evolution of Number of Bugs (LENOB). LENOBj..k

favors the recent changes (closer to the last version of the his-

tory) over the changes further in the past by applying a weight-

ing function: LENOBj ..k (C) =
∑k

i=j+1 |ENOBi(C)∗2i−k|.
Earliest Evolution of Number of Bugs (EENOB).
EENOBj..k favors the old changes (closer to the first version

of the history) over the changes near the end of the experiment:

EENOBj ..k (C) =
∑k

i=j+1 |ENOBi(C) ∗ 2j−i+1|.
Added Number of Bugs (ANOB). ANOBj..k is the sum

of the number of bugs added in the subsequent ver-

sions: ANOBj ..k (C) =
∑k

i=j+1 ENOBi(C) if NOBi(C) −
NOBi−1 (C) > 0.

518518524

Removed Number of Bugs (RNOB). RNOBj..k is the sum

of the number of bugs removed in the subsequent ver-

sions: RNOBj ..k (C) =
∑k

i=j+1 |ENOBi(C)| if NOBi(C)−
NOBi−1 (C) < 0.

Bugs Persistence (BP). BPj..k is the number of versions

from version j to version k containing at least one bug:

BPj ..k (C) =
∑k

i=j 1 if NOBi(C) > 0.

2) Visualization: The visualizations provided by BugMaps

are based on Distribution Map, a generic technique to reason

about the result of software analysis and to help to understand

how a given phenomenon is distributed across a software

system [9]. Using Distribution Map three metrics can be

displayed through height, width and color of the objects. In

our maps, small rectangles represent class histories, bugs, or

classes and containers represent packages or package history.

BugMaps provides five maps based on the history of the

bugs of a system (Figures 4-8) and two maps for a particular

snapshot of a system (Figures 9-10).

We analyzed the Eclipse JDT system according to the

proposed visualizations, which are showed in the next figures.

It was collected 91 versions from 2005-01-01 to 2008-06-14.

Evolution of NOB. In this map, the height of a class is the

Evolution of Number of Bugs measure and the color is the total

number of bugs in the class lifetime. Therefore, the longer is

the height of a class, the higher is the number of bug changes

performed during its lifetime. In Figure 4, we can see that in

package lookup about half of the classes are involved with bug

changes and about half of the classes are free of bugs, which

means that this package should have a special attention during

the development.

Fig. 4. Evolution of NOB

Added x Removed NOB. In this map, the height of a class is

the added number of bugs measure, the width is the removed
number of bugs measure, and the color is the total number of

bugs during its lifetime. Therefore, if a class is similar to a

square, it means that added bugs have also been removed. If

a class has more height than width, it means that bugs have

been more added than fixed. If a class has more width than

height, it means that bugs have been more fixed than added, in

the time period under analysis. This may happen if the period

considered is not at the start of the system life, and there was

bugs already identified but not corrected. In Figure 5, we can

see that most of the classes that changed their number of bugs

are square-shaped, which means that added bugs have also

been fixed during the lifetime of the class.

Fig. 5. Added x removed NOB

Earliest x Latest NOB. In this map, the height of a class is

the earliest number of bugs measure, the width is the latest
number of bugs measure, and the color is the total number

of bugs during its lifetime. Therefore, if a class has more

height than width, it means that bugs are closer to the first

version under analysis (old bugs). If a class has more width

than height, it means that bugs are closer to the last version

under analysis (recent bugs). Figure 6 shows that bugs can

be either close to the first (vertical shapes) and last version

(horizontal shapes), which means that the bugs reported for

such classes have been fixed during all the time frame of the

experiment.

Fig. 6. Earliest x latest NOB

Persistence of NOB. In this map, the color of a class

represents the persistence of bugs measure. Green means that

there are bugs in less than 20% of the versions, orange means

that there are bugs in 20% to 80% of the versions, and black

means that there are bugs in 80% or more of the versions.

White means that there are no bugs. In Figure 7, we can see

that in package lookup bugs persistence is a problem, since

there are several black classes, which means that bugs are

persistent during almost classes lifetime.

Fig. 7. Persistence of NOB

Bug as entity. This map represents bugs instead of classes.

The color of a bug represents its lifetime, i.e., the number

of days it stayed opened. Blue denotes a bug that was still

opened at the end of the time period considered. White

denotes a bug that was opened for a short time, going to

yellow is a bug that was opened up to 3 months, and going

to red is a bug that was opened for more than 3 months. The

width of a bug representation denotes the bug complexity,

measured as the number of classes changed to fix the bug.

Bugs are sorted according to the date they were created. In

Figure 8, complex bugs (long width) are dispersed in time,

519519525

which may mean that the system is not becoming so complex

(bugs are spread all over it). Bugs going to red are also

dispersed in time, which means that the developers are not

spending more and more time solving bugs. There are many

blue (opened) bugs at the end, and a few in the beginning.

Fig. 8. Bug as entity

The BugMaps tool also provides the following maps for a

particular snapshot of the system (i.e. maps that are not based

on the history of versions):

NOB per Class. In this map, the color of a class represents

the number of bugs in a particular version. Green means

that a class has no bugs. Orange means that a class has

one or two bugs. Red means that a class has three or more

bugs. Therefore, this visualization provides an overview of

the distribution of the bugs in a given snapshot of the system.

Figure 9 provides an overview of the distribution of the bugs

in one of the first versions of the experiment where we can

see a small number of classes with bugs (orange/red).

Fig. 9. NOB per Class

Bug Lifetime. In this map, the color represents the median

lifetime of the bugs affecting a class. Green means that a class

has no bugs or on median it took less than a week to fix its

bugs. Orange means that on median it took between a week

and a month to fix its bugs. Finally, red means that on median

it took more than a month to fix its bugs. We consider the

median because it is common to have bugs that last for years

in the system, which bias the average. In Figure 10, we can

see that there is no default behavior for the lifetime of the

bugs affecting a class. There are classes that on median it

took between one week and one month to fix the bugs and

there are classes that on median it took more than a month.

Fig. 10. Bug Lifetime

III. RELATED WORK

Churrasco is a web-based tool for collaborative software

evolution analysis [5]. The tool automatically extracts infor-

mation from a variety of software repositories, including ver-

sioning systems and bug management systems. The ultimate

goal is to provide an extensible tool that can be used to

reason about software evolution under different perspectives,

including the behavior of bugs. In contrast, BugMaps has

a much stronger historical perspective and offers different

metrics. Moreover, BugMaps targets the visual and historical

exploration of a single variable (number of bugs). For this

purpose, it supports a more rich set of visual measures for

reasoning about bugs. Other visualization metaphors have

also been provided for understanding the behavior of bugs,

including system radiography (which provides a high-level

indicator about the parts of the system more impacted by bugs)

and bug watch (which relies on a watch metaphor to provide

several information about a particular bug) [10]. Hatari [6] is

a tool that provides views to browse through the most risky

locations and to analyze the risk history of a particular location

in a system at the level of lines of code. On the other hand,

BugMaps works at the level the of classes and packages.

IV. CONCLUSIONS

In this paper we proposed a tool to support retrieval and

analysis of bugs stored in bug-tracking systems. The tool

extracts time series of defects from such systems and allows

the visualization of different bug measures. Its ultimate goal is

to facilitate the task of understanding the system with respect

to its bugs.

ACKNOWLEDGMENT This research has been supported

by grants from FAPEMIG, Brazil and INRIA, France.

REFERENCES

[1] O. Nierstrasz, S. Ducasse, and T. Gı̌rba, “The story of Moose: an
agile reengineering environment,” in European Software Engineering
Conference, 2005, pp. 1–10.

[2] SonarSource, “Sonar platform.” [Online]. Available: sonarsource.org
[3] R. Wettel, “Visual exploration of large-scale evolving software,” in

International Conference on Software Engineering, 2009, pp. 391–394.
[4] M. D’Ambros and M. Lanza, “Bugcrawler: Visualizing evolving soft-

ware systems,” in European Conference on Software Maintenance and
Reengineering, 2007, pp. 333–334.

[5] M. D’Ambros and M. Lanza, “Distributed and collaborative software
evolution analysis with churrasco,” Science of Computer Programming,
vol. 75, no. 4, pp. 276–287, 2010.

[6] J. Sliwerski, T. Zimmermann, and A. Zeller, “Hatari: Raising risk
awareness,” in European Software Engineering Conference, 2005, pp.
107–110.

[7] C. Couto, C. Silva, M. T. Valente, R. Bigonha, and N. Anquetil,
“Uncovering causal relationships between software metrics and bugs,”
in European Conference on Software Maintenance and Reengineering,
2012.

[8] T. Girba and S. Ducasse, “Modeling history to analyze software evo-
lution,” Journal of Software Maintenance and Evolution: Research and
Practice, vol. 18, pp. 207–236, 2006.

[9] S. Ducasse, T. Girba, and A. Kuhn, “Distribution Map,” in International
Conference on Software Maintenance, 2006, pp. 203 –212.

[10] M. D’Ambros, M. Lanza, and M. Pinzger, “A bug’s life: Visualizing a
bug database,” in International Workshop on Visualizing Software for
Analysis and Understanding, 2007, pp. 113–120.

520520526

