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Abstract
Bootstrapping is well known in the context of compilers,
where a bootstrapped compiler can compile its own source
code. Bootstrapping is a beneficial engineering practice be-
cause it raises the level of abstraction of a program making
it easier to understand, optimize, evolve, etc. Bootstrapping
a reflective object-oriented language is however more chal-
lenging, as we need also to initialize the runtime of the lan-
guage with its initial objects and classes besides writing its
compiler.

In this paper, we present a novel bootstrapping infrastruc-
ture for Pharo-like languages that allows us to easily extend
and modify such languages. Our bootstrapping process relies
on a first-class runtime. A first-class runtime is a meta-object
that represents a program’s runtime and provides a MOP to
easily load code into it and manipulate its objects. It decou-
ples the virtual machine (VM) and language concerns by in-
troducing a clear VM-language interface. Using this process,
we show how we succeeded to bootstrap a Smalltalk-based
language named Candle and then extend it with traits in less
than 250 lines of high-level Smalltalk code. We also show
how we can bootstrap with minimal effort two other lan-
guages (Pharo and MetaTalk) with similar execution seman-
tics but different object models.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications—Extensible Lan-
guages

General Terms Languages, Object-Oriented Program-
ming

Keywords Bootstrapping, OOP, Traits, Pharo, Meta-
programming

1. Introduction
A language initialization, or bootstrap, is the process where
the initial elements of the language are set up. In high-level
languages, such as Ruby or Smalltalk, this bootstrap re-
quires also the creation of initial objects and classes such
as the Object base class and the Boolean true and false ob-
jects (cf. Section 2). The language bootstrap usually fixes
the semantics of the language, for safety reasons or language
design. It is however desirable to have easy access to the
language to modify it and extend it. For example, studying
Pharo [BDN+09], a smalltalk-inspired language and plat-
form, we identified a need for better support in the introduc-
tion of new features such as traits [SDNB03] and first-class
instance variables [VBLN11].

Changing an existing language is indeed challeng-
ing without the proper knowledge or infrastructure. On
one hand, languages whose language bootstrap is VM-
based (i.e., defined inside virtual machine (VM) routines)
fix several language features and prevent us to change it
without changing the VM. In addition, such routines may
mix VM and language concerns, making the code harder
to understand and change. On the other hand, reflective
languages [Smi84] such as Lisp or Smalltalk provide the
means to modify the language elements at runtime. How-
ever, as these languages contain circular definitions [CKL96]
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we need to stage these changes to avoid metastability prob-
lems [KdRB91] i.e., a change in the language may introduce
a meta-call recursion and turn the system unusable.

This paper takes a high-level low-level programming ap-
proach [FBC+09] and revisits an already well-known tech-
nique: an object-oriented reflective language bootstrap, as
it is known in the context of compilers (i.e., a circular boot-
strap, where a compiler can compile itself). We believe this
concept has not been fully explored for object-oriented re-
flective languages, where the necessary infrastructure is still
ad hoc and the impact it has on the development process of
language engineers is usually unknown. In this context we
pose the following research question: What is the infrastruc-
ture required to execute a circular bootstrap of an object-
oriented reflective language?

In this paper we propose a circular bootstrap infrastruc-
ture that allows us to build an object-oriented reflective lan-
guage such as Pharo using itself (cf. Section 4). Our solution
overcomes the metastability issues in an elegant manner by
transparently breaking the circular definition of the language
during its definition: the language bootstrap is described in
itself using the full power of the language but executed by
a specialized interpreter that manipulates the language ele-
ments as behavior-less data structures. It also avoids to du-
plicate code in an external VM-based bootstrap by reusing
the means to create the language’s structures already avail-
able in reflective languages.

Once bootstrapped we can easily modify the language
to change critical parts of the language runtime and extend
the language model adding e.g., traits [SDNB03] without
VM changes and avoiding the staging required by circular
definitions of the language (cf. Section 5). A first-class
runtime in our infrastructure provides a high-level API to
manipulate the low-level wirings of the language (cf. Section
6). This allows us to easily extend our bootstrap and thus, our
language. Additionally it makes a clear distinction between
VM and language concerns. This allows us to modify the
language without changing the VM.

We implemented our bootstrapping infrastructure on top
of the Pharo language (cf. Section 7). Finally, we evaluate
it by conducting and measuring different experiencies with
languages with similar execution as Pharo (cf. Section 8).
First, we show how we can bootstrap a Smalltalk implemen-
tation named Candle and extend it with traits; then we boot-
strapped from scratch MetaTalk, a Smalltalk implementation
with mirror based reflection, and the Pharo language that in-
cludes extensions such as traits and first class instance vari-
ables. These languages can then run on a stock VM without
modifications. The co-evolution of VM code and language
will be addressed in future work.

2. Bootstrapping Definitions
Bootstrapping is known in many different contexts with
different meanings (e.g., a machine’s startup process, the

process to build a more complex system from a simpler
one). Particularly in programming languages we can see it
is broadly used with two different meanings: the startup of
the language runtime elements (e.g., as in Java’s bootstrap
class loader [LB98]) and the self-compilation also known
as a compiler’s bootstrap. To avoid confusions in terminol-
ogy, this section states the definitions we use in this paper.
Piumarta et al. [Piu06] define a programming language as
follows:

DEFINITION 1 (Programming Language). A programming
language L is a combination of syntax, semantics and prag-
matics, a compiler and a runtime.

The syntax is the set of rules that restricts the legal content
of a program’s source code. The semantics are the meaning
of that content (e.g., how a method invocation will be exe-
cuted at run-time). The pragmatics are the range of visible
effects and values that are possible during a program execu-
tion (e.g., the range of available integer values). The com-
piler is a program that translates a program’s source code
written in our language to a machine executable run-time
representation of that program (cf. Figure 1). The runtime is
the software that support the execution of a program at run-
time, providing the builtin structures and functions available
in the language (e.g., the initial objects of the language) and
services such as memory management and cross-cutting op-
timizations. Notice that the language syntax, semantics and
pragmatics are embedded within the compiler and the run-
time.

Syntax +
Semantics +
Pragmatics

Runtime

Programming
Language

Compiler

Program's Source Code

Executable Program

<<complies to>>

<<uses>>

Figure 1. How a language is composed.

Based on this definition, we can define bootstrapping as
follows:

DEFINITION 2 (Language Definition). A language defini-
tion DL of a programming language L is a textual repre-
sentation all elements of L. That is, it is the source code used
to create an executable runtime and compiler for L.
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DEFINITION 3 (Programming Language Bootstrap Process).
A bootstrap process of a programming language L is a
process that produces a programming language L from a
language definition D. That is, it produces the set of its
syntax, semantics and pragmatics, its compiler and runtime.

DEFINITION 4 (Circular Bootstrap Process). A circular
bootstrap process (or self-bootstrap process) of a program-
ming language L is a bootstrap process of L where its
definition DL is expressed in L.

Example: The process that creates a C compiler from
assembly source code is the bootstrap of this C compiler.
The process that creates a C compiler from C source code
of the compiler is a circular bootstrap of the C compiler.

We cannot apply our bootstrap definition to VM-based
languages as we do with a language such as C. In VM-based
languages the program’s runtime is responsible of the VM
pursuing (mainly) the goals of abstraction and portability.
To consider these cases and make such a distinction we
introduce first the following definitions:

DEFINITION 5 (Language Runtime). The language run-
time RL of a programming language L is the set of elements
and structures that belong to the language and are required
to run a program.

DEFINITION 6 (Virtual Machine Runtime). The virtual
machine (VM) runtime VMRL of a programming language
L is the set of elements and structures that belong to the
virtual machine and are required to run a program. These
elements are often invisible to the language.

Example: The language runtime of the languages Smalltalk
and Ruby are the initial objects and classes of the language
e.g.,nil, true, false, Object class and Class class. Their VM
runtimes implement support for memory management and
program execution. VMs manipulate these programs but are
however invisible to them (cf. Figure 2).

VM
Runtime

Language
Runtime

toString
Object

at:
at:put:

Array

isTrue
True

true

- GC
- Interpreter

- FFI support
- JIT
...

Figure 2. VM and Language Runtime.

A bootstrap of a VM-based language should create the
initial objects and classes of the language runtime. Then,

just writing a compiler for a VM-based language L in the
language L is not enough to bootstrap a VM-based language
because these compilers produce often bytecodes that do not
include runtime information (this is the case of e.g., Java’s
and Smalltalk’s compilers).

DEFINITION 7 (Partial Bootstrap Process). A partial boot-
strap process of a language L is a process that produces a
part of language L from a language definition D i.e., it pro-
duces its syntax, semantics, pragmatics, compiler, runtime
or a combination of them, but not all of them.

Example: Just by themselves, a self-compiling Smalltalk
compiler and the startup of the Smalltalk’s language runtime
are partial bootstrap processes. However, their combination
results in a complete bootstrap of the Smalltalk language.

In this paper, with the objective of changing the program-
ming model of a programming language we focus on the
circular bootstrap of its language runtime. Bootstrapping a
compiler is out of the scope of this paper as it is a more
known technique.

DEFINITION 8 (Language Runtime Bootstrap Process).
A language runtime bootstrap process for a programming
language L is a process that starts (produces) the language
runtime of a program that is written in L from a language
runtime definition RL.

DEFINITION 9 (Language Runtime Definition). A lan-
guage runtime definition RL for a language L is the
definition of the initial runtime structures of L, so a program
can run on it e.g., the initial objects and classes.

We can combine these last definitions with Definition 4
to define e.g., a partial circular bootstrap process. We skip
those definitions for space reasons and because they do not
bring ambiguity.

3. Challenges of Extending a Language
Runtime

In this section we present the problems raised by VM-based
language runtime bootstraps. Then, we present the specific
challenges that circular bootstrapping has to resolve to be
beneficial.

3.1 Fixed Language Runtimes
Object-oriented languages have often a VM-based language
runtime bootstrap i.e., the runtime bootstrap is described in
routines that are part of the VM. This decision is indeed
practical as the VM can safely initialize the language struc-
tures and solve the language bootstrapping issues avoiding
recursions [KdRB91] (e.g., create the first-class without a
class). For example, Figure 3 shows an excerpt of the code
that initializes the class hierarchy in the Ruby VM written
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in C1. From this code, Ruby’s basic class hierarchy is com-
posed by BasicObject as its root, followed by Object, Mod-
ule and Class. These classes are created manually without a
class, and once the class Class is available, their class refer-
ences are updated. Similar code is in place to initialize basic
objects such as nil, true and false and other classes.

void Init_class_hierarchy(void) {
rb_cBasicObject = boot_defclass("BasicObject", 0);
rb_cObject = boot_defclass("Object", rb_cBasicObject);
rb_cModule = boot_defclass("Module", rb_cObject);
rb_cClass = boot_defclass("Class", rb_cModule);

rb_const_set(rb_cObject, rb_intern("BasicObject"),rb_cBasicObject);
RBASIC_SET_CLASS(rb_cClass, rb_cClass);
RBASIC_SET_CLASS(rb_cModule, rb_cClass);
RBASIC_SET_CLASS(rb_cObject, rb_cClass);
RBASIC_SET_CLASS(rb_cBasicObject, rb_cClass);

}

Figure 3. Code of the Ruby VM that initialises the class
hierarchy (excerpt). The VM code fixes the language class
hierarchy.

This piece of code shows at first glance that the VM
fixes the classes and object model of the language. The
language object model is fixed and prevents us to easily
change it without recompiling the VM. A second side-effect
of this decision is that we manipulate objects of a language
using the wrong level of abstraction. Indeed, we see the
objects as memory structures and we manipulate them using
pointer arithmetic instead of the usual abstractions that the
language offers. Finally, this kind of language bootstrap is
a source of spaghetti code, as it makes easy to mix VM
and language concerns. It becomes also difficult to recognize
whether a piece of code belongs to one or the other. Figure 4
illustrates this with an excerpt of the JikesRVM2 [AAB+00].
In this example, the memory manager is initialized in the
middle of the initial class loading phase. This introduces a
temporal coupling that prevents changing this code without
VM specific knowledge.

3.2 Circular Bootstrapping
To solve the problems above we propose the introduction
of a circular bootstrap process. Bootstrapping is a beneficial
engineering practice because it raises the level of abstrac-
tion of a program, following the principles of high-level low-
level programming i.e., expressing low-level concerns using
high-level languages [FBC+09]. High-level low-level pro-
gramming simplifies the complexity of a language runtime
bootstrap in several ways:

1 Taken from the version 2.1 of the Ruby VM in http://svn.ruby-lang.org/
repos/ruby
2 Taken from the version 3.1.3 of the JikesRVM in http://sourceforge.net/
projects/jikesrvm

private static void finishBooting() {
...
MemoryManager.postBoot();
...
runClassInitializer("java.lang.Runtime");
runClassInitializer("java.lang.System");
runClassInitializer("sun.misc.Unsafe");
...
MemoryManager.fullyBootedVM();
...
runClassInitializer("java.util.logging.Level");
runClassInitializer("gnu.java.nio.charset.EncodingHelper");

}

Figure 4. Code of the JikesRVM that initialises the ini-
tial classes of the runtime (excerpt). The code performing
the initial class loading is mixed with the code that initialises
the memory manager of the VM.

Abstraction. Developers benefit from the abstractions of
the high-level language they are using. For example, in-
heritance and polymorphism permit better ways to orga-
nize a program’s behavior, enhancing developer’s pro-
ductivity. Also, they may benefit from the services that
the high-level language provides such as garbage collec-
tion or cross-cutting optimizations.

Tooling. Developers can edit or debug the language runtime
creation using the tools they normally use to edit their
high-level programs. They do not depend on several sets
of tools, or on doing a mind-shift e.g., thinking in Ruby
or Smalltalk objects while programming with C memory-
structures.

3.3 Challenges of Circular Bootstrapping
While a circular bootstrap is indeed beneficial, we identify
two different challenges that arise from building a circular
bootstrap process of a language runtime:

Differentiate VM and Language Concerns. To minimize
the changes in the VM when modifying a language, we
need to understand which are VM concerns and which
are language concerns. For example, a main VM concern
is the language’s execution model i.e., the set of rules that
the language follows to execute code. Changes that re-
quire modifying the execution model (e.g., changing the
way messages are passed between objects) will proba-
bly require VM modifications. By understanding these
differences, we can however build new features without
changing the execution model e.g., the Pharo and Ruby
languages introduce implicit metaclasses3 while the VM
has no knowledge about them.

Manage Circular Definitions. Introducing features such as
traits [SDNB03] in an existing language becomes more

3 an implicit metaclass is a class that is created for each class automatically
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challenging when we use traits to define the language
runtime itself. For example, we can use traits to define
the collection library of our language to simplify the col-
lection library code [BLDP10]. However, this introduces
circular definitions in the language, as probably the lan-
guage runtime is defined in terms of basic collections
also. Introducing such changes is often complex and re-
quires a staged process e.g., first define the language run-
time without traits, then introduce the notion of trait, fi-
nally redefine the language runtime with traits.

These challenges leads us to our main research question:

What is the infrastructure required to execute a circular
bootstrap of an object-oriented reflective language?

4. A Circular Bootstrapping Infrastructure
To answer the question above, we present Seed, our solu-
tion based on a specialized code interpreter and first-class
runtimes. Our solution succeeds to bootstrap Pharo-like lan-
guages i.e., object-oriented reflective languages that run on
top of the Pharo VM. The reflective property of these lan-
guages allows us to reuse the reflective API of the language
to bootstrap itself. Additionally, the Pharo VM imposes a
class-based with single inheritance object model. We believe
however that this infrastructure can be adopted by other re-
flective object-oriented languages. We illustrate our exam-
ples with the Candle language, a simple Smalltalk-based lan-
guage that runs on top of the Pharo Virtual Machine4. Sec-
tion 5 shows how this infrastructure is used further to boot-
strap other languages with different object models but same
execution semantics.

4.1 Our Solution in a Nutshell
We propose Seed, a bootstrapping infrastructure for Pharo-
like languages based on a bootstrapping interpreter and a
first-class runtime (Figure 5). We use an example to show
the different extension points required to support extensions.

The Candle Example. To show our solution let’s consider
the circular language runtime definition of the Candle
language (Figure 6). This definition is based on Mi-
croSqueak [Mal]. We adapted it to run on top of the latest
Pharo VM and we added manually some the code for the
initial startup and class initialization that was missing.

This language definition is the main point of extension of
our language: code refactorings, removals and additions of
classes and methods, can be applied by directly modifying
this definition. The bootstrapping interpreter is a code in-
terpreter (e.g., an abstract syntax tree interpreter) that inter-
prets this definition to bootstrap the language runtime: cre-
ate the classes and objects defined in it, and execute specific

4 The name Candle comes from the idea of a small light. Candle is inspired
in the Pharo language, a bigger light.

code to initialize them. The bootstrapping interpreter is addi-
tionally in charge of solving the bootstrapping issues of the
language e.g., creating a first object without a class, and cre-
ating a class without a class. This interpreter is the second
point of extension of our infrastructure: we need to extend it
when we add circular behavioral extensions to our language,
such as traits [SDNB03] or first-class instance variables ex-
tending the language semantics [VBLN11].

The bootstrapping interpreter interacts with the language
runtime under construction through a first-class runtime
object. A first-class runtime is a meta-object represent-
ing the language runtime and providing a meta-object-
protocol (MOP) [KdRB91] to manipulate it. This meta-
object provides a high-level API and encapsulates VM con-
cerns during the bootstrap, so we only have to deal with
language concerns. Section 6 discusses about first-class run-
times and their MOP.

Language
Definition

<<interprets>>
Bootstrapping

Interpreter

First-class 
runtime

<<manipulates>>

<<manipulates>>

Language Runtime

Figure 5. Solution overview. A bootstrapping interpreter
uses the self-description in the language definition to build
the language through the a clear VM-language interface.

"Newly added code for initial objects"
nilObject := UndefinedObject basicNew.
trueObject := True basicNew.
falseObject := False basicNew.

"existing code"
nil subclass: #ProtoObject

instanceVariableNames: ’’.

ProtoObject subclass: #Object
instanceVariableNames: ’’.

Object subclass: #UndefinedObject
instanceVariableNames: ’’.

ProtoObject >> isNil
^ false

UndefinedObject >> isNil
^ true

"Newly added code for class initialization"
String initialize.

Figure 6. Excerpt of Candle’s definition. It includes the
creation of basic objects, classes and methods.
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Once the execution of the language definition is finished,
the language runtime is considered as bootstrapped and pro-
grams can be loaded and run on top of it. We believe from
our observations in existing code from other language im-
plementations, that this infrastructure can be generalized and
used in languages such as Ruby, Javascript or even Java. This
issue is however not further discussed in the scope of this pa-
per and is a future work.

4.2 Solving Bootstrapping Issues
Once we have a language definition as the one in Figure 6,
our next question is: How do we execute5 such definition?
Indeed, initially our language runtime contains no classes,
methods nor objects. We identify two main bootstrapping
problems or paradoxes that arise from executing the defini-
tion’s code: inexistent classes and inexistent methods. Let’s
illustrate these problems by studying the following expres-
sion:

UndefinedObject basicNew.

Bootstrapping issue #1: Inexistent Classes. During the
execution of any expression at bootstrap time, we may
find inexistent classes as UndefinedObject is in the example.
Creating the inexistent class at this moment would introduce
another paradox, because creating the UndefinedObject class
requires even more classes to exist such as String, Array or
Class.

Solution: stub classes. Our bootstrap process breaks the
circularity by transparently introducing stub classes. Stub
classes contain the minimal requirements to execute simple
operations such as the instantiation primitive (basicNew in
this example). Later, when the real classes are created by
the process, stubs are replaced.

Bootstrapping issue #2: Inexistent Methods. Since our
circular bootstrap is an object-oriented program, any opera-
tion we want to apply should be resolved as a message-send
to an object e.g., the message basicNew in the example.
However, even if classes exist, methods may not be yet
installed in the system.

Solution: alternative method lookup. Our bootstrap
process resolves message sends by providing an alternate
method lookup. Instead of looking-up methods in the
(possibly incomplete) class hierarchy of the bootstrapped
runtime, the bootstrapping interpreter performs the method
lookup in the language definition where all the information
is available.

Figure 7 illustrates the behavior of the bootstrapping inter-
preter during the execution of the "UndefinedObject basicNew"

5 The execution of such language definition will produce a bootstrapped
language.

expression. First, if the class UndefinedObject does not ex-
ist, it creates a stub UndefinedObject class and maps it to its
corresponding definition in the language definition. Further
usages of this class will use the existent stub instead of cre-
ating new ones. Next, to interpret the basicNew message the
interpreter looks it up in the class of the object in the lan-
guage definition. As the class from the language kernel and
the language definition are mapped, the interpreter knows
where to start the method lookup. Finally, the found method
is executed in the language kernel and an instance of the Un-
definedObject class is created.

5. Extending a Bootstrapped Language
The Seed infrastructure provides two main language exten-
sion points: the language definition and the bootstrapping in-
terpreter. In this section we evaluate how easy it is to extend
Candle with traits. We first introduce the notion of traits for
the end-user of the language. In a second step we introduce a
circularity in the language: we define traits using themselves.
Besides we apply this change in two stages for clarity, our
infrastructure can apply all these changes at the same time
simplifying the bootstrapping process.

5.1 Extending the Definition: Introducing Traits
Modifications that do not change the language execution se-
mantics only require extending or modifying the language
definition. This is the case of changes such as renames, ad-
ditions and removals of classes and methods or modifica-
tions in the class hierarchy. Addressing a bug in the language
bootstrap becomes simple as we don’t require modifying nor
understanding VM code to do such a change.

We can implement a simple version of traits6 in Candle
with method flattening. Trait methods are directly installed
inside the classes that use them. This allows us to add traits
without modifying the VM execution semantics. Our trait
definition is as follows:

Object subclass: #Trait
instanceVariableNames: ’name methods’.

Trait >> addMethod: aMethod
methods add: aMethod

"[...]methods for installing methods into traits[...]"

Trait >> uses: aTrait
aTrait methods do: [ :m | self installMethod: m ]

Class >> uses: aTrait
aTrait methods do: [ :m | self installMethod: m ]

6 The author will notice that this version is not a complete version as it does
not implement e.g., conflict validation. A complete trait implementation is
out of the scope of this paper.
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Bootstrapping
Interpreter

UndefinedObject basicNew

Undefined
Object

UndefinedObject 
class

UndefinedObject
<stub>

Class
new

Class>>basicNew
  <primitive: new>

1. execution starts

2. stub
created

<mapped>

3. lookup

4. method
executed

Language Definition (AST) Language Runtime

Figure 7. The Bootstrapping interpreter in action. A stub class is created for a non existent class. Each class is mapped
to its description in the language definition. The lookup is then performed inside the language definition. Once the method is
found, it is executed inside the language kernel.

As long as no class in the language definition uses traits,
traits are not needed during the bootstrap’s execution, lim-
iting our changes to the language runtime definition. Once
bootstrapped, the language user can define its own traits and
use them inside his application.

5.2 Extending the Interpreter: Circular Traits
Circular definitions add new bootstrapping issues, as they
alter the execution and semantics of the bootstrap. The boot-
strapping interpreter should be aware of these circular defi-
nitions to properly resolve them. Fortunately extending the
interpreter takes only a couple of special lines of code (be-
sides extending the parser).

To continue with our example from above, we can use
the power of traits inside our language to define traits them-
selves. We can for example factor out the method uses:, re-
peated in Trait and Class, into a trait TTraitable. We modify
the Candle definition as follows, defining our new trait and
modifying the classes Trait and Class to use such trait.

Trait named: #TTraitable.

TTraitable >> uses: aTrait
aTrait methods do: [ :m | self installMethod: m ]

Object subclass: #Trait
uses: TTraitable.

Object subclass: #Class
uses: TTraitable.

This change introduces a new circularity: the uses method
that defines trait usage is defined by a trait. The bootstrap-
ping interpreter needs knowledge on traits to run the new
bootstrap. We can extend the AST of the bootstrapping in-

terpreter with trait knowledge in a couple of high-level code
methods as in:

BootstrapClassAST >> methods
"this method is used during the bootstrap method lookup"
^ super methods , self traitMethods

BootstrapClassAST >> traitMethods
"appends all the methods from the traits"
^ self bootstrapTraits gather: [ :trait | trait methods ]

At the end, this change included 30 lines of code of the
trait implementation and 215 lines of code extending the
bootstrapping interpreter (that included trait parsing and se-
mantic analysis and conflict resolution of traits). We believe
this cost is low enough in comparison with applying this
change modifying the virtual machine or making a bootstrap
in a staged way. A staged process would generate several in-
termediate (and bug prone) versions of the code until reach-
ing the last version. Sections 7 and 8 discuss further the cost
of implementing our infrastructure and extending it.

6. First-class Runtime MOP
The bootstrapping interpreter works by interpreting the lan-
guage definition ASTs and applying its effects into a lan-
guage runtime. For this, the bootstrapping interpreter uses
a first-class representation of the bootstrapped runtime,
namely an object space. An object space is a meta-object that
eases the bootstrap manipulations through its meta-object
protocol (MOP) [KdRB91]. This MOP is based on our pre-
vious work on the object space model [PDFB13]. Following,
we present the basic operations of the object space MOP that
we use for bootstrapping divided into three main categories:
code loading MOP, instance manipulation MOP and VM-
language configuration MOP. Object spaces encapsulate par-
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ticular VM details such as class or object format, making our
bootstrapping infrastructure agnostic of such details.

6.1 Code Loading MOP
The bootstrap must support the installation of new code.
In our context of object-oriented applications, this implies
the proper installation (and deinstallation) of classes and
methods.

create class <name>, <spec>. It creates a class named
<name> whose instances will follow the specification
<spec> i.e., their type and number of slots. It returns a
meta-object of the newly created class.

get class by name <name>. It returns the meta-object of
the class named <name>.

compile method <source code>. It creates a new method
by compiling <source code>. Names (e.g., class names,
globals) inside <source code> are linked to the corre-
sponding objects and classes inside the virtualized ap-
plication. It returns the meta-object os the newly created
method.

install method <class>, <method>. It installs <method> as
part of <class>. This operation makes available this
method to the rest of the code in the virtualized appli-
cation.

swap identity <old object>, <new object>. It replaces all
references to <old object> by references to <new ob-
ject>. This operation is important to replace stub objects
once the full class is created.

6.2 Instance Manipulation MOP
Besides basic primitives to create classes and methods, the
bootstrap will create and configure normal objects. The fol-
lowing MOP provides the basic operations for such a manip-
ulation.

create instance <class>. Creates an instance of <class>
i.e., an instance that conforms to the spec of <class>,
containing the number and type of slots described in it. It
returns a meta-object of the newly created instance.

instances of <class>. It returns a list of the instances of
<class>.

get class of <object>. It returns the meta-object that corre-
sponds to the class of <object>.

set class <object>, <class>. It changes the class of <ob-
ject> to <class>, if both classes have the same spec.

get slot <object>, <slot name>. It returns the meta-object
that corresponds to the object referenced by the slot
named <slot name> of <object>.

set slot <object>, <slot name>, <new value>. It sets the
slot named <slot name> of <object> to <new value>.

6.3 VM-Language Configuration MOP
The VM and language are tightly coupled in order to execute
code. We can generalize this relationship as a set of the
well-known objects of the language that the VM requires
at runtime. Examples of such well-known objects are the
boolean objects true and false required to evaluate boolean
expressions, or the Array class that may be used internally by
the VM. To apply a VM with the newly-created objects, we
include in our MOP two basic operations that allows us to
modify the interface between the language and the VM.

get special object <name>. It returns a meta-object that
corresponds to <name>. This operation enables the in-
trospection of the current VM-language configuration.

set special object <name> <object>. It replaces the object
at <name> by <object>. This operation enables the re-
configuration of the VM-language interface.

7. Implementation
We implemented our bootstrapping infrastructure on top of
Espell, a language runtime virtualization infrastructure for
the Pharo language implementing object spaces [PDFB13].
Object spaces are isolate-like applications as in the Multi-
tasking Virtual Machine [CD01]. A hypervisor object space
can fully manipulate other object spaces through a special li-
brary. With this infrastructure, two independent Pharo appli-
cations run on top of the same VM: the bootstrapping inter-
preter inside the hypervisor and the bootstrapped application
inside a normal object space. Figure 8 shows an overview of
the implementation.

Espell VM

Hypervisor
Object Space

Bootstrapped
Object Space

Bootstrapping
Interpreter

Espell
Object Spaces

<<manipulate>>

primitive calls Package

<<uses>>

Figure 8. Implementation Overview. Two isolated object
spaces run on top of the same Espell VM. The Espell Ob-
ject Spaces library allows the hypervisor to manipulate the
virtualized application. The bootstrapping interpreter inside
the hypervisor.

Our Espell implementation comprises some modifica-
tions on Pharo Stack VM and one Smalltalk library (ob-
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ject spaces library). The VM modifications provide support
to run several object spaces on top of the same VM (and
having for example an initially empty object space). These
changes include the primitives to resume an object space’s
execution and patch some primitives such as the ones that
iterate over the heap (to only iterate over the correct object
space). Espell’s object space library implements the object
space meta-object and its MOP. Espell object spaces manip-
ulate the bootstrapped runtime through VM primitives. Most
of the primitives we use were already existing in the VM. Ta-
ble 1 offers an overview of the effort of this implementation
measuring its number of lines of code. Implementing Espell
supposed a one-time effort of 461 lines of code extending
the existing VM and a bit more of 4700 lines of Smalltalk
code for the object space library.

Component Lines of code

Espell VM 461

Espell Library 4735

AST Interpreter* 3422

Bootstrapping Interpreter 455

Table 1. Implementation Effort. Implementation effort of our
solution measured in lines of code. All of them are one-time efforts.
(*) The AST interpreter is an already existing Pharo library. Thus,
we didn’t developed it, we just imported it and subclassed it with
our bootstrap interpreter. This numbers do not count parsing for
AST generation.

All these are one-time implementation efforts. Espell’s
implementation is portable between different operating sys-
tems as they are completely written in Slang, a Smalltalk
subset used to build Pharo’s VM, so not platform specific
code is used. The bootstrapping interpreter extends the al-
ready existing AST interpreter of Pharo adding object space
interaction. During our evaluation 8 we discuss further the
cost of doing a particular bootstrap on this infrastructure.

8. Evaluation
In this section we present our results while bootstrapping
three different Pharo-like case study languages. We consider
these three languages Pharo-like as they share the same VM
execution semantics. However, they present different object-
models for the developer. We first present each of our case
studies briefly. Then, we present the effort of bootstrapping
each of them on our infrastructure and finally some mea-
surements: startup time of the bootstrapped language and
the time it took to bootstrap. Each of the measurements we
present below were made on a 2.2 Ghz Intel Core i7 machine
with memory 8 Gb 1333 Mhz DDR3.

8.1 Case Studies
To evaluate our solution we bootstrapped three Pharo-like
languages with our solution. These three languages share

a Smalltalk syntax to reuse the parsing and AST infras-
tructure. Although these similarities, each of the three lan-
guage kernels possess different object models and reflective
models: traits [SDNB03], first-class slots and object layouts
[VBLN11] and mirror based reflection [BU04]. Figure 9 il-
lustrates the concepts in each of these languages and their
relationships.

Candle. Candle is a Smalltalk-based language with a mi-
cro language kernel. Its class model includes class based sin-
gle inheritance with implicit metaclasses, as Smalltalk-80
and Pharo. We built Candle’s language kernel by adapting
MicroSqueak [Mal] to run on top of the Pharo VM. This
micro language kernel was designed with the explicit goal
of being the minimal distribution for the Squeak Smalltalk
language.

MetaTalk. Metatalk [PBD+11] is a reflective language
where reflection is fully decomposed in explicit meta-
objects, namely mirrors [BU04]. Metatalk makes the usage
of reflection explicit: a program’s execution takes place in
the base-level of the language kernel, and it jumps to a meta-
level when a mirror is used. Metatalk class model is sim-
pler than Smalltalk’s class model. It does not impose meta-
classes. Instead, all classes are instances of the single Class
class. If there is a need for metaclasses (to share behaviour
between classes), the developer can write its own explicit
metaclasses.

Metatalk decomposes reflective behaviour as well as the
language meta-information i.e., class’ names, field order and
names amongst others are part of its mirrors, and thus, they
belong to the meta-level. When there is not a need for reflec-
tion, a Metatalk program can discard its meta-level with all
the meta-information in it. This decomposition allows us to
bootstrap Metatalk with or without its meta-level. This re-
sults in two different language kernels: Metatalk base-level
has no reflection at all, while Metatalk with both the base
and the meta level is a fully-reflective language.

Pharo. Pharo [BDN+09] is an object-oriented reflec-
tive Smalltalk-inspired programming language. As it is a
Smalltalk-80 inspired language, its class model includes im-
plicit metaclasses. Pharo provides also circularly defined
traits [SDNB03] and class extensions (i.e., the ability to add
methods to a class that belongs to another package). Pharo
includes also first-class instance variables (namely slots) that
provide a MOP to alter the meaning of instance variable
reading and writing [VBLN11]. The current version of Pharo
defines slots in their classes (meaning that we should create
them during the bootstrap) but are not used circularly yet to
specialize behavior.

Pharo is a fully-reflective language, placed at the end of
the reflective spectrum. The Pharo language includes intro-
spection in the kernel itself, and also self-modification strat-
ified in three levels: object mutation facilities, a class builder
and a compiler. The main challenge in Pharo is that the ker-
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Figure 9. Simplified object model schemas. Schema illustrating the concepts of Candle, MetaTalk and Pharo.

nel itself of Pharo is defined by Traits: e.g., the Trait class
uses a Trait. First-class slots also add to the self-description
of the language. This introduces new circular definitions to
be expressed in the bootstrapping interpreter.

8.2 Bootstrapping Effort
Bootstrapping each of these languages had a main effort of
creating the language definition. However, most of the code
of these definitions was given. The missing code parts that
we were not available were the creation of initial objects
(first objects and classes), the initialization7 order of classes
and some adaptations to the particular VM implementation.
We introduced each of the missing elements manually in the
language definition. Table 2 shows this effort measured in
lines of code.

Table 2 also presents the cost in lines of code (LOC)
of the extensions we applied. Implementing Traits required
on one hand modifying Candle’s language definition and
on the other hand extending the interpreter. Pharo already
included a mature Trait implementation that we did not have
to modify. The trait interpreter extension is also a one-time
cost and it can be used for both Candle and Pharo bootstraps.

Component Definition Traits
Candle 8984* 30

MetaTalk 1274* n/a

Pharo 92635* 0

Interpreter Extensions n/a 215

Table 2. Cost in LOC of bootstrapping and extending our case
studies. The cost of creating the language definition and extending
it. The interpreter extensions are a one-time effort that can be
reused by all the bootstraps. (*) The major part of the language
definitions were provided.

7 The initialization order is different from the bootstrap order. The initializa-
tion order is the order in which classes should be initialized. For example,
Character should be initialized before String. Our solution does not force the
language designer to worry about the order in which the object representing
the class of the runtime are created.

8.3 Startup Time
From a user point of view a language runtime bootstrap is
transparent within the startup of an application. It should be
however fast and ensure always the same initial state. To
achieve these properties, our solution caches the result of
the bootstrap process in a snapshot. The bootstrap process
is only re-executed when we change the language, otherwise
we load the cached version. Caching keeps both properties of
application startup: it guarantees the same state and it is fast.
In this section we discuss the startup time using our cache
technique. The bootstrap time is discussed and evaluated
further in Section 8.4.

Table 3 shows a comparison in the startup time of our
VM loading our different languages using snapshots. Due
to the absence of a Pharo VM-based bootstrap, we contrast
our solution with Ruby. We measured the startup times by
taking the mean of running each of them 10 times. From the
results, we observe our startup time is bigger than Ruby’s
one but still reasonable, under the third of a second. We
believe the difference resides however in the startup of other
VM components and is independent of the language runtime
bootstrap.

Language Startup time
Ruby 64ms +/-7.1

Pharo 280.8ms +/-3.4

Candle 186ms +/-7.6

Metatalk w/o mirrors 202ms +/-13

Metatalk reflective 205ms +/-11

Table 3. Startup time in perspective. Comparing the startup
time of a ruby application with the same in Pharo, Candle and
MetaTalk using a snapshot.

Implementation-wise, the snapshot we used is a memory
dump of the VM heap. This heap contains all the objects,
classes and methods we created during the bootstrap. At
load-time, the memory dump is restored into memory and
the VM internals are re-configured to use this heap using the
VM setup interface (Section 6). This idea is the same used
by languages such as Smalltalk, Lisp, Javascript in V8 or
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the JikesRVM [AAB+00]. Loading a binary image is as fast
as reading the file and putting its contents inside the VM’s
heap.

8.4 Bootstrap Process Time
The bootstrap process time depends on the size and com-
plexity of the bootstrapped language runtime. Table 4
presents the code size of each of these language bootstraps
in terms of their code entities (classes, traits, mirrors) and
methods. We can observe that Pharo presents a lack of mod-
ularity of the language that impacts in the amount of code
elements we have to build. Pharo is historically a monolithic
system which precludes us to build a minimal system by the
moment of writing this paper. In fact, the Pharo language we
are bootstrapping represents a subset of the full Pharo lan-
guage as it is distributed.

Language Code entities Methods
Candle 100* 875

Metatalk w/o mirrors 25 114

Metatalk reflective 58* 166

Pharo 626* 6812

Table 4. Language Code Size. Amount of code entities and
methods in each of the case study languages.(*) Pharo and Candle
have implicit metaclasses, meaning that for each created class,
an associated metaclass is created even if not necessary. Metatalk
introduces a mirror object for each of the classes in the language.

Indeed, larger and more complex bootstrap processes,
as in the case of Pharo, lead to slower bootstrap times.
Fortunately our snapshot cache strategy avoids paying the
bootstrap process time at each startup. Indeed, a normal user
only pays the startup time that we measured in the previous
section (cf. Section 8.3). We measured our bootstrap times
using an unoptimised AST interpreter in Table 5. This time
comprehends the entire bootstrap process: from parsing the
code in the language definition to its complete setup. We
executed each of these benchmarks 10 times.

Language Bootstrap time
Candle 86.75s +/-8

Metatalk w/o mirrors 0.96s +/-0.11

Metatalk reflective 13.7s +/-0.06

Pharo 2h30m +/-10m

Table 5. Building Benchmarks. Comparing the execution time
of the bootstrapped languages using AST interpretation and partial
evaluation. (*) Pharo and Candle have implicit metaclasses, mean-
ing that for each created class, an associated metaclass is created
even if not necessary. Metatalk introduces a mirror object for each
of the classes in the language.

We can observe from our measurements that bootstrap-
ping Metatalk takes in average 1 second if no mirrors are
built and 13 in the reflective Metatalk case. Candle bootstrap
is slower, in the order of 1 minute and a half, mainly because
it contains eight times more methods than Metatalk. These
are however acceptable times for debugging. The worst case
is Pharo, where creating a class is an operation that takes in
average 17 seconds.

Optimizing the bootstrap process time is only necessary
for debugging purposes. The final user of the language will
use a cached version of the system and will perceive no dif-
ference. However, optimizing the bootstrap is a challeng-
ing task: since the main purpose of the bootstrap process is
to easily change part of the semantics and structure of the
language entities we cannot fix them statically to optimize
them. In exchange, we chose to optimize the interpretation
cycle using a dynamic bytecode compiler that compiles the
interpreted code on demand. This compiled code is cached
and executed directly on the VM bypassing the interpreta-
tion step in following executions. We implemented dynamic
compilation to optimize Pharo as it presents the worse of
our results (cf. Table 6). We reduced the total bootstrap time
by a factor of 2.85. We observed a mayor improvement on
class creation, where the time improves from 17 to less than
half a second. Please notice that the current implementation
only optimizes class creation. There is still room for im-
provements since we did not optimize method compilation
nor parsing. Our plans are to improve the method execution
speed since the bootstrap should be part of the future Pharo
release.

Interpreter Compiled Factor
Total 2h39m +/-10m 52m38s +/-3m39s 2.85x

One class 17s +/-1 0.4s +/-0.2 39.85x

Table 6. Comparison of bootstrap time in absence and pres-
ence of dynamic compilation in Pharo.

9. Related Work
We present three different categories of related work. First,
we present a similar approach to bootstrap in Common
Lisp’s bootstrap. Second, we present some high-level low-
level programming scenarios that aim to solve similar prob-
lems than ours, focusing on the VM side. Finally, we
present approaches similar to object-spaces to clarify the
VM-language interface and allow its manipulation from an
external entity.

9.1 Reflection and Open Object Models
Reflective systems and languages provide support for ac-
cessing to a program’s representation and change it at run-
time [Smi84]. To enable reflection, mainstream languages
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such as Java (in some degree), Ruby or JavaScript intro-
duce causal connections i.e., the programming language in-
corporates structures that represents aspects of itself (e.g.,
classes, objects), in such a way that if one structure changes
the aspect it represents is updated accordingly, and vice-
versa [Mae87]. This introduces a circular reference between
the reflective and the base layers of the language with a
risk of infinite meta-recursions [CKL96]. Indeed, when the
meta-level tries to change some code that it uses at the same
time. Denker et al. partially solve this problem in Reflec-
tivity [DSD08], a reflective framework that avoids meta-
recursions by tracking reflective calls and control when re-
flective features are activated. Reflectivity succeeds to mod-
ify and scope behavioral changes for different meta-levels
inside the same reflective architecture. However, it does not
provide with support for structural changes of the code the
reflective framework depends upon, such as changing the
structure of classes or removing methods and classes.

Piumarta et al. [PW06] present an open extensible object
model that can be used to define the JavaScript and self pro-
totype models and traits. While this object model is simple
enough, it is meant to design a language from scratch. The
problem we face in the current paper is different: we want
to extend an already existing language. In such way, we can
benefit from existing libraries and the existing VM imple-
mentation. Such extensible object model is used to define
COLAs [Piu06]. In this white paper, Piumarta describes the
infrastructure to build and circularly define a language using
such object model. This infrastructure is based on the idea
of an open system where no part is hidden (and can thus be
changed) such as in our solution. Regarding the complexity,
we believe our solution offers good results and is much sim-
pler to implement than Piumarta’s, which requires the imple-
mentation of two circularly defined languages (a coke and a
pepsi).

9.2 Common Lisp Bootstraps
Within the approaches for bootstrapping reflective languages
we can find the Common Lisp bootstrap [Rho08, Str14].
They describe their approach for generating a new virtual
machine and image for Lisp:

1. A cross compiler is installed inside the host environment.

2. The cross compiler generates Lisp object files by using a
special namespace, isolated from the host.

3. Those files are then loaded into a byte stream represent-
ing the memory layout of a Lisp image.

4. Once the image is built, the virtual machine loads and
initialises it.

Rhodes does not discuss the challenges of a bootstrap pro-
cess, nor many of the problems it solves besides the self-
description of the system. The article does not clearly an-
swer the problems we encounter. It does not show that the
process can be applied to other languages.

9.3 Metacircular VMs
VMs have an impact as well in language kernel evolu-
tion: the VM defines and enforces the language’s execution
model. Not so surprisingly, evolving a VM presents usu-
ally the same problems as evolving a language kernel: high
amounts of low-level code which leads to lack of abstraction,
and mixed and scattered concerns. Metacircular VMs pro-
pose the use of high-level low-level programming for VM
evolution [FBC+09]. A metacircular VM is a VM written
in the same language it provides in the end. Such VMs use
high-level language VM frameworks to provide the VM de-
veloper with prefabricated components e.g., it is possible to
simply parametrize a premade GC to reduce development
effort. The main goal of this research is to shield the VM
developer from complexity and irrelevant detail, and so, im-
prove his efficiency.

Several Metacircular VM projects were developed in
the last years. Maxine [WHVDV+13] and Jikes [AAB+00]
are Metacircular VMs for the Java programming lan-
guage. Pinocchio [VBLN11] and the Squeak VM [IKM+97]
present efforts in the Smalltalk side. Klein [USA05] does
the same for the Self programming language with a partic-
ularity: there is no separation between VM and language.
PyPy [RP06] is a Python-based high-level VM framework
that is mainly used to develop a Python VM, however it
has been successfully used to build VMs for other languages
such as Smalltalk [BLM+08].

All the works above succeed to provide the developer
with low-level abstractions written in a high-level language,
with the exception of some explicit low-level code for its
startup/bootstrap. By using high-level languages to describe
a VM, we can build better abstractions and tools to work
on VM related concerns. For example, PyPy[RP06] presents
already implemented garbage collectors (GCs) and Just In
Time (JIT) compilers in complete isolation to the code inter-
preter. The Squeak VM provides with a VM simulator that
allows one to debug the VM code with the tools meant for
Squeak itself. Still such works do not focus on bootstrapping
a language runtime but the VM runtime, focus more on the
VM execution part (GC, speed, JIT), and are thus comple-
mentary.

9.4 Clarifying the VM and Language interface
Regarding a clear separation between VM and language, we
find in the JVM Tool Interface (JVMTI) [JVM] and the Klein
VM [USA05] two approaches that are related to the object
spaces first-class runtime.

JVMTI [JVM] is the Java VM interface used by devel-
opment and monitoring tools that appeared as an evolution
of the Java Debug Interface (JDI). JVMTI provides a pro-
gramming interface to manipulate the VM internals through
functions: memory management, thread control and manip-
ulation, stack frame and heap access, object and class ma-
nipulation. It succeeds to be used with debugging, dynamic
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analysis, code coverage or profiling purposes. Regarding
bootstrapping, the JVMTI has not been used, to our knowl-
edge, to manipulate the Java language kernel at initialisation
time (or any of the other languages on top of it).

The Klein VM [USA05], already named amongst the
metacircular VMs, exposes mirror objects to enable object
manipulation. It exposes as well the VM internals to the
language through low-level mirrors. These low level mirrors
make explicit the interface between the language and the
VM elements. Particularly, Klein explores the usage of low-
level mirrors in the context of debugging a remote Virtual
Machine.

10. Discussion and Future Work
10.1 Infrastructure Requirements
Our solution indeed makes Pharo and languages alike easier
to modify. Our bootstrapping infrastructure solves the boot-
strapping circular problems and provides two main points
to extend a language. This flexibility comes however at the
cost of a more complex infrastructure: the introduction of a
bootstrapping interpreter and a first-class runtime.

Regardless of the simplicity of building an AST
interpreter, it means more code to maintain for the
language developers. The ideas behind Metacircular
VMs [WHVDV+13, AAB+00, VBLN11, IKM+97] could
reduce this burden by making reusable the VM interpreter
for bootstrapping and provide a bootstrap-time object space
meta-object. Alternatively, the interpretation steps can be re-
placed by a Just-In-Time compiler such as the one we used
for optimizing the Pharo’s bootstrapping process.

10.2 Reflection and Stub Classes
The introduction of stubs in our bootstrap process comes
with one main drawback. Using reflective operations on a
class is to be avoided before the real class is created. Oth-
erwise the reflective operations will try to act on the class
stub and miss-behave. This happens since stub classes do
not contain all the reflective data to answer to reflective op-
erations properly. Our implementation fills stubs only with
the information necessary for instantiation.

A possible alternative to solve this problem in the future
is to detect reflective operations on stubs and apply them
transparently on the elements of the language definition. The
language definition ASTs have all the information required
to answer such operations (e.g., the class’ superclass, list
of subclasses, names of instance variables, etc.). However,
such information is not encoded as objects from the boot-
strapped language and would require transformations intro-
ducing more bootstrapping issues.

10.3 VM-Runtime Bootstrap
Our solution focuses on the language runtime bootstrap and
gives us a degree of freedom to modify our languages. We
showed how we can easily add mirror-based reflection, traits,

first-class instance variables. It does not, however, allow us
to change the language execution semantics, which still re-
sides in the VM (often encoded in bytecode or assembly
generation). Changing the VM execution semantics poses
a big challenge as it affects many components: the lan-
guage runtime definition, the interpreter, the JIT compiler,
amongst others. We would like to explore in the future the
co-evolution of VM and language.

11. Conclusion
Bootstrapping is commonly known by its usage on compiler
building, where a compiler can compile itself. A bootstrap
process allows us to easily change this system as it is ex-
pressed in terms of itself, taking advantage of its abstractions
and tools.

This paper explores an infrastructure to ease the circu-
lar bootstrap of reflective object-oriented language runtimes
from the Pharo family. Our infrastructure is based on a boot-
strapping interpreter that solves the bootstrapping issues by
transparently introducing class stubs and providing an alter-
native method lookup. This bootstrapping interpreter manip-
ulates the language runtime under bootstrapping through a
first-class runtime. This first-class runtime offers a MOP that
presents a clear VM-language separation.

We validated our bootstrap process by bootstrapping
three object-oriented languages of the Pharo family. These
three languages have key differences between them: Candle
is a minimal Smalltalk with implicit metaclasses, the core of
the Pharo language is defined by traits and first-class slots,
and Metatalk decomposes reflection from the base-level and
stores meta-information in the meta-level of the language.
These three languages run on top of the same Pharo Vir-
tual Machine. We showed also that a fast startup can still be
achieved through caching.
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