

Applying Traits to the Smalltalk Collection Hierarchy

Andrew Black, Nathanael Schärli and Stéphane Ducasse

Department of Computer Science and Engineering
OGI School of Science & Engineering
Oregon Health & Science University

20000 NW Walker Road
Beaverton, OR 97006-8921 USA

Technical Report Number CSE 02-014

also

 Universität Bern
Institut für Informatik und angewandte Mathematik

Neubrückstrasse 10
CH-3012, Bern, Switzerland

Technical Report Number IAM-02-007

25

th

 November 2002

A version of this paper has been submitted to the 2003

European Conference on Object-Oriented Programming (ECOOP).

If accepted, the paper will appear in the proceedings of ECOOP 2003,

and subsequent bibliographic citations should

refer to the conference proceeding

— This page is blank —

Applying Traits to the Smalltalk Collection Hierarchy ?

Andrew Black, Nathanael Schärli, and St́ephane Ducasse

OGI School of Science & Engineering, Oregon Health and Science University, U.S.A
Software Composition Group, University of Bern, Switzerland
black@cse.ogi.edu, {schaerli, ducasse}@iam.unibe.ch

Abstract. Traits are a programming language technology modeled after mixins
but avoiding their problems. In this paper we refactor the Smalltalk collections
hierarchy using traits. We observed that the original hierarchy contained much
duplication of code; traits let us remove all of it. Traits also make possible much
more general reuse of collection codeoutsideof the existing hierarchy; for exam-
ple, they make it easy to convert other collection-like things into true collections.
Our refactoring reduced the size of the collection hierarchy by approximately 12
per cent, with no measurable impact on execution efficiency. More importantly,
understandability and reusability of the code was significantly improved, and the
path was paved for a more intensive refactoring.

Keywords: Reuse, Mixins, Traits, Smalltalk, Collection, Hierarchy, Refactoring,
Inheritance, Multiple Inheritance

1 Introduction

We have long believed that classes have too many responsibilities in object-oriented
programming. In many languages, classes are used for conceptual classification. They
also provide for reuse in two different ways: as factories, they can be used to instan-
tiate many similar objects, while as superclasses, they can be incorporated into new
subclasses. These two kinds of reuse often have conflicting requirements. As factories,
classes must be complete, while when creating new subclasses, it is more convenient to
be able to incorporate small fragments of behavior.

We have developed a new programming construct, which we call atrait, to address
this problem. Traits are intended as fine-grained units of code reuse. In essence, traits
are first class collections of methods that can be reused by classes anywhere in the
inheritance hierarchy.

The contributions of this paper are:

– a study of the internal structure of the existing Smalltalk collections classes, with
particular attention to code duplication, unnecessary inheritance, the use ofsuper
and method redefinition in inheritance chains;

– a report of our experience using traits to help us remove these problems; and
– a description of the new collection hierarchy that resulted from our refactoring.

? This research was partially supported by the National Science Foundation of the United States
under award CCR-0098323, and by the Swiss National Foundation.

2 Andrew Black, Nathanael Schärli, and St́ephane Ducasse

2 What is the Problem?

Single inheritance is a very popular programming technology, and has been adopted
widely since its introduction in Simula 67 [BDMN73]. Inheritance is also very power-
ful, and the basis for several major success stories, including Smalltalk and Java. But
this success and power should not blind us to the fact that sometimes inheritance is just
not up to the task of supporting the wide range of abstractions that we expect to find in
a modern object-oriented framework.

Let us illustrate this point with a small example. The classRectangleMorph in
Squeak Smalltalk represents a rectangular block of color that can be viewed on the
display. As such, it is a subclass ofBorderedMorph, from which it inherits and reuses
many methods;BorderedMorph in turn is a subclass ofMorph. Squeak also defines a
classRectangle, which inherits fromObject. However,RectangleMorph is not a Rect-
angle; that is,RectangleMorph does not implement all of the protocol understood by
Rectangle objects.

It happens thatRectangle adds 83 messages to the protocol ofObject. Of these, only
13 messages are also understood by aRectangleMorph; the other 70 are missing from
RectangleMorph’s protocol. We say “missing” because, to the client, aRectangleMorph
clearly is aRectangle; moreover, the state of aRectangleMorph includes a fieldbounds
that defines theRectangle that it occupies.

A programmer who wishes to fix this problem is faced with a number of unpleasant
alternatives. One option is to copy the 70 missing methods from Rectangle and paste
them into RectangleMorph. This is a clear violation of the DRY (Don’t Repeat Yourself)
principle [HT00].

Another option is to provide a conversion methodRectangleMorph>>asRectangle1,
and expect the client to remember to use this conversion method whenever there is
a need to send a message that aRectangleMorph does not understand. For example,
instead of sayingmyMorph area, the client must saymyMorph asRectangle area. This
moves a burden onto the morph’s client that we feel should be borne by the morph itself.

A third option is to delegate the 70 missing methods. The simplest way of doing
this is to implement each of them as a one line method that converts the receiver to a
rectangle and resends the message. So the area method would actually be implemented
in RectangleMorph as follows.

RectangleMorph >>area
↑ self asRectangle area

This seems like the best choice, but it is hard to achieve without tool support, burdens
the code forRectangleMorph with a lot of “noise”, making it harder to understand, is
inefficient, and increases the size of the object code.

Multiple inheritance has been proposed as another solution to this problem; multi-
ple inheritance would allowRectangleMorph to haveRectangle andBorderedMorph as
its superclasses and to inherit methods from both. But multiple inheritance is complex,
and may introduce more problems than it solves. For example, with multiple inheri-
tance, RectangleMorph would inherit two sets of state variables that represent the same

1 The notationc>>name refers to the method onname in classc.

Applying Traits to the Smalltalk Collection Hierarchy 3

information (the position of the rectangle), and two sets of methods that access and
change these variables. A whole literature has developed on how to resolve these prob-
lems; Taivalsaari [Tai96] provides a good starting point.

Traits provide a solution to the problem of givingRectangleMorph the behavior
of a Rectangle while retaining the simplicity of single inheritance. The trait solution
avoids duplication of both source and object code, eliminates indirection, and improves
modularity, thus making the classes easier to understand.

3 What are Traits?

Stripped to its essentials, a trait is a first-class collection of named methods. Methods in
a trait must be “pure behavior”; they cannot directly reference any instance variables,
although they can do so indirectly. The purpose of a trait is to be composed into other
traits and eventually into classes. A trait itself has no superclass; if the keywordsuper
is used in a Trait, it is treated as a parameter that becomes bound when the trait is
eventually used in a class.

Associated with each trait is a set of methods called therequiresset. Any class
that uses a trait will have to provide all of these required methods. For example, if
the methods in a trait use the expressionself size but the trait itself does not define a
methodsize, thensize will be in the requires set of the trait. When this trait is eventually
incorporated into a class,size will have to be defined, perhaps as a method that fetches
the value of an instance variable.

Two traits be combined using the symmetricsumoperation+. The sumT1 + T2

contains all of the non-conflicting methods ofT1 andT2. However, if there is acon-
flict, that is, ifT1 andT2 both define a method with the same name, the two methods
annihilate andneitheris present in the sum.

Traits require an extended form of inheritance in which a new class is constructed
from a superclass, a trait, and some local definitions of instance variables and methods.
Locally defined methods replace methods obtained from the trait. As one would expect,
methods defined locally and in the trait override those inherited from the superclass, but
these methods can access the superclass method usingsuper . In practice, the trait used
to construct a new class is often the symmetric sum of several more primitive traits. If
the new class is intended to be concrete, the required methods of the trait should all be
supplied either by inheritance or in the local definitions.

In addition to serving as components of a class, traits can be used as components
of other traits. A trait T can be constructed by composing some local definitionswith
another trait S. S becomes a subtrait of T; methods defined directly in T itself replace
replace methods of the same name defined in S.

Because of the way that we define trait composition and inheritance, the semantics
of a method is independent of whether it is defined in a trait T, or in a class or trait
that uses T as a component. Consequently, it is always possible toflattena nested trait
structure at any level without changing any of the methods. We believe that this flatten-
ing property is crucial in making traits easy to use; it is one of the critical differences
between traits and mixins.

4 Andrew Black, Nathanael Schärli, and St́ephane Ducasse

class

C
trait

T

a a x
b a y
c a z

local definitions

D

i

c a p
d a g
i a ↑i

subclasss

T with D
extends C

i

a a x
b a y
c a p
d a g
i a ↑i

inheritance

trait

U

c a q
d a r

+

trait

T

a a x
b a y
d a r

trait

E with T

a a x
b a y
c a p
d a g

nesting

local definitions

E

c a p
d a g

Fig. 1. This figure illustrates the major operations on traits: composition (nesting), inheritance,
and sum. Note that local definitions and classes can contain instance variables and methods that
refer to them, whereas traits cannot. local definitions are shown without an enclosing box because
they are not reusable, in contrast to traits and classes.

Applying Traits to the Smalltalk Collection Hierarchy 5

A trait can also be derived from another trait by providingaliasesfor some of the
methods. Aliases are useful to make conflicting methods available under another name,
or to match the requirements of some other trait. Finally, a trait can be constructed by
excludingmethods from an existing trait; we use− as the exclusion operator. Exclusion
is useful to avoid conflicts or if someone else has defined a trait that is “too big” for your
application. We did not need to use aliasing or exclusion in refactoring the collections
hierarchy, so they will not be described further.

The reader interested in a deeper understanding of traits and their composition op-
erators, and in how traits avoid the difficulties that have beset multiple inheritance and
mixins, is referred to companion papers [SDNB02a,SDNB02b].

4 Applying Traits to RectangleMorph

Now that the reader has at least a superficial understanding of what traits are, we can
return to the example ofRectangleMorph and show how traits can be used to make
a RectangleMorph understand the 70Rectangle methods missing from its protocol.
Besides illustrating one way to use traits, this example illustrates the process used to
transform a class into traits, the difficulties that may be encountered when recomposing
the traits, and gives a glimpse at the tool support that we have built.

The first step is to construct a trait that contains the missing methods. This is easy to
do, because the appropriate code already exists in classRectangle. In the traits browser,
an extension of the standard Smalltalk browser that understands traits, we use the “new
trait from class” menu item to create a new trait from classRectangle. We call the
new traitTRectangle; the initial T in the name of a trait is a convention that we follow
throughout this paper.TRectangle contains all of the methods ofRectangle, except
that theabstract variablerefactoring2 is first applied to any method that accesses an
instance or class variable directly.

For example, a Rectangle has two instance variables,origin andcorner, which rep-
resent its top left and bottom right coordinates. So this method

Rectangle >>width
”Answer the width of the receiver.”

↑ corner x − origin x

is converted into

TRectangle >>width
”Answer the width of the receiver.”

↑ self corner x − self origin x

2 This refactoring is given different names by different authors. Opdyke [Opd92] calls it “ab-
stract access to member variable”, Fowler [FBB+99] calls it “encapsulate field”, and the Refac-
toring Browser [RBJ97] calls it “abstract variable”.

6 Andrew Black, Nathanael Schärli, and St́ephane Ducasse

Once this refactoring is completed, the new trait has all ofRectangle’s methods, but
those that depended on the instance variables ofRectangle now depend instead on the
existence of methodsorigin andcorner. The traits browser lets us examine all of the
methodsTRectangle, and also shows its requires set, which contains the three messages
origin, corner andspecies.

We can now use the browser to construct a new classRectangularMorph as a sub-
class ofRectangleMorph. This is very much like the process of creating a new subclass
in the ordinary Smalltalk browser. However, in addition to specifying the superclass,
we are given the opportunity to write an expression specifying which trait (if any) we
wish touse, i.e., to nest inside the new subclass.

As a result, the new classRectangularMorph immediately has the 70 methods it
needs fromRectangle. But it is incomplete; the browser shows us that it still requires
definitions for methodsorigin andcorner. We define these directly in the new class.

RectangularMorph >>origin
↑ self bounds origin

RectangularMorph >>corner
↑ self bounds corner

The requirementspecies has already been satisfied; our superclassRectangleMorph
inherits this method from classObject, and thus we do too.

The browser also shows us a list of overridden methods, that is, methods where
RectangularMorph redefines a method inherited fromRectangleMorph. This is because
some methods, likecenter, that are in the traitTRectangle, were also defined inRect-
angleMorph. We need to look at each of these methods, and decide whether we wish to
keep the version fromTRectangle, keep the version from the superclass, or write a new
method. Buttons in the browser let us examine both of the alternatives and make our
choice quickly.Throughout this process, the traits browser helps to focus the program-
mer on just those methods that require her attention. Once all of the overrides have been
examined and all of the requirements met, our task is complete: we have created a new
class that has the functionality ofRectangleMorph andRectangle. The only methods
that we needed to write were the two “glue methods”origin andcorner, which express
how the abstract state of a rectangle is extracted from aRectangleMorph.

While looking at the overrides, we notice that the methods for=, hash andprintOn:
are inappropriate. We use a browser menu to exclude these methods from the composite
RectangularMorph. We choose to do this bysetting an exclusion(see figure 2), the effect
of which is to modify the command that is used to buildRectangularMorph so that the
= andhash methods fromTRectangle are never used:

RectangleMorph subclass: #RectangluarMorph
uses: {TRectangle − {#=. #hash. #printOn:}}
instanceVariableNames: ”
classVariableNames: ”
poolDictionaries: ”
category: ’TraitsPaperExample’

Applying Traits to the Smalltalk Collection Hierarchy 7

Fig. 2. The programmer examines the list of overrides created whenRectangularMorph uses
the traitTRectangle as a component. The= method fromTRectangle is inappropriate, and is
excluded.

Small examples like this are fun, but they are not by themselves a compelling test
of a tool and a language extension that have as their goal the understanding and reuse
of large class libraries. To see how well traits perform in such a situation, they must
be applied to a large framework. We chose the Smalltalk Collections Hierarchy for this
experiment.

5 The Smalltalk Collection Hierarchy

The “collection hierarchy” is a loosely defined group of general purpose subclasses of
Collection andStream. The version of the hierarchy that appears in the“Blue Book”[GR83]
contains 17 sub-classes of collection and 9 sub-classes of Stream, for a total of 28
classes, and had already been redesigned several times before the Smalltalk-80 system
was released. This group of classes is often considered to be a paradigmatic example of
object-oriented design.

In Squeak, the abstract classCollection has 98 subclasses, and the abstract class
Stream has 39 subclasses, but many of these (likeBitmap, FileStream andCompiled-
Method) are special purpose classes crafted for use in other parts of the system or

8 Andrew Black, Nathanael Schärli, and St́ephane Ducasse

in applications, and hence not categorized as Collections by the system organization.
However, the system categoryCollections also includes various other classes, such as
Character, Link andAssociation, that are related to collections but do not themselves
exhibit collection behavior.

For the purposes of this study, we use the term “Collection Hierarchy” to mean the
49 classes that are subclasses ofCollection or Stream and arealsoin the system category
Collections. This is still a large group; the full list is shown in Figure 3. These 49 classes
respond to 794 messages and define a total of 1236 methods.

Page 1

Collection
Bag

IdentityBag
CharacterSet
SequenceableCollection

ArrayedCollection
Array

WeakArray
Array2D
ByteArray
ColorArray
FloatArray
IntegerArray
RunArray
String

Symbol
Text
WordArray

WordArrayForSegment
Heap
Interval
LinkedList
MappedCollection
OrderedCollection

SortedCollection

Set
Dictionary

IdentityDictionary
PluggableDictionary
WeakKeyDictionary

WeakIdentityKeyDictionary
WeakValueDictionary

IdentitySet
PluggableSet
WeakSet

SkipList
IdentitySkipList

WeakRegistry
Stream

AttributedTextStream
PositionableStream

ReadStream
WriteStream

LimitedWriteStream
ReadWriteStream

RWBinaryOrTextStream
Transcripter

TextStream
TranscriptStream

Fig. 3. The Collection Hierarchy in Squeak. Indentation indicates subclassing; for clarity, the
scopes of the upper-level classes are indicated by lines.

5.1 The Varieties of Collection

To understand the challenge of refactoring the collection hierarchy, the reader needs at
least a superficial knowledge of the wide variety of collections in these classes, their
commonalities and their differences. The reader who is familiar with the Smalltalk col-
lection hierarchy may safely skip this section.

Programming with aggregates rather than individual elements is an important way
of raising the level of abstraction of a program. The Lisp functionmap, which applies
an argument function to every element of a list, returning a new list, is an early exam-
ple of this style, but Smalltalk-80 adopted aggregate-based programming as a central
tenet. Modern functional programming languages such as ML and Haskell have fol-
lowed Smalltalk’s lead.

Applying Traits to the Smalltalk Collection Hierarchy 9

Suppose you have a data structure containing a collection of student records, and
wish to perform some action on all of the students that meet some criterion. Program-
mers raised to use an imperative language will immediately reach for a loop. But the
Smalltalk programmer will write

students select: [:each | each gpa < threshold]

which evaluates to a new collection containing precisely those elements ofstudents for
which the bracketed function returnstrue . 3

It is important to note that the messagecollect: is understood byall collections in
Smalltalk. There was no need to find out if the student data structure was an array or a
linked list: thecollect: message is understood by both. Note that this is quite different
from using a loop, where one must know whetherstudents is an array or a linked list
before the loop can be set up.

In Smalltalk, when one speaks of a collection without being more specific about the
kind of collection, one means an object that supports well-defined protocols for testing
membership and enumerating the elements.All collections understand the testing mes-
sagesincludes:, isEmpty andoccurrencesOf:. All collections understand the enumera-
tion messagesdo:, select:, reject: (which is the opposite ofselect:), collect: (which is
like lisp’s map), detect:ifNone: inject:into: (which performs a left fold) and many more.
It is the ubiquity of this protocol, as well as its variety, that makes it so powerful.

Sequenceable Not Sequenceable

Accessible by Index Not Indexable Accessible by Key Not Keyed

Interval
SortedCollection
Array
ByteArray
OrderedCollection

LinkedList Dictionary
IdentityDictionary
PluggableDictionary

Set
IdentitySet
PluggableSet
Bag
IdentityBag

Arrayed
Implementation

Ordered
Implementation

Hashed
Implementation

Linked
Implementation

Interval
Implementation

Array OrderedCollection
SortedCollection

Set
IdentitySet
PluggableSet
Bag
IdentityBag
Dictionary
IdentityDictionary
PluggableDictionary

LinkedList Interval

Fig. 4. Collections can be categorized according to whether or not they are sequenceable,i.e.,
whether there are clearly defined first and last elements. All of the sequenceable collections ex-
cept linked lists can also be indexed by an integer key. Of the non-sequenceable collections,
dictionaries can be accessed by an arbitrary key, such as a string, while sets and bags cannot.

Beyond this basic uniformity, there are many different kinds of collection. Figure 4
shows a categorization of the collection classes according to whether they are sequence-
able, that is, whether an enumeration of the collection starts from afirst element and
proceeds in a well-defined order to alast element.Array is the familiar indexable data
structure with a fixed size; arrays are initialized tonil and can hold arbitrary objects.
anArray at: n retrieves thenth element ofanArray, andanArray at: n put: v changes the
nth element tov. LinkedLists are sequenceable but not indexable, that is, they under-
standfirst andlast, but notat:. The classOrderedCollection is more general than array;

3 The expression in brackets can be thought of as aλ-expression defining an anonymous function
λx.x gpa < threshold.

10 Andrew Black, Nathanael Schärli, and St́ephane Ducasse

the size of anOrderedCollection grows on demand, and it has methods foraddFirst: and
addLast: as well asat: andat:put:. An Interval is an immutable collection defined by a
computational rule when it is created. For example,5 to: 16 by: 2 is an interval that con-
tains the elements 5, 7, 9, 11, 13 and 15. It is indexable withat:, but cannot be changed
with at:put:.

The differences between the various kinds of sequenceable collection manifest them-
selves in several different dimensions.

1. How is the order established? Sorted collections use a supplied total ordering func-
tion, intervals are implicitly ordered, while arrays and ordered collections are or-
dered explicitly when elements are inserted.

2. Is the size fixed (intervals and arrays) or variable (sorted collections, ordered col-
lections, and linked lists)?

3. Is the collection immutable (Interval andSymbol, not shown in the figure) or muta-
ble (the others).

4. Is the collection constrained to hold a particular kind of object, or is it completely
general?ByteArrays are constrained to hold small integers, andLinkedLists are con-
strained to hold elements that conform to theLink protocol. IntegerArrays, Char-
acterArrays, WordArrays, Strings and Symbols, not shown in the chart, are also
constrained.

The unordered collections (sets, bags and dictionaries) can be categorized in a dif-
ferent set of dimensions.

1. Are duplicates allowed (dictionary and bag) or disallowed (set)?
2. Can the elements be accessed by a key (dictionaries), or not (sets and bags)?
3. How are the keys (in a dictionary) or the values (in a set or a bag) compared? In

other words: what test is used to ascertain whether two elements added to a set are
“equal”? Dictionary, Set andBag use the= method provide by the elements; the
Identity variants of these classes use the= = method, which tests whether the argu-
ments are the same object, and thePluggable variants use an arbitrary equivalence
relation supplied by the user when the collection is created.

In addition to these categorizations by functionality, as re-implementors of the col-
lection hierarchy we must also be aware of how the collection classes are implemented.
As shown in figure 5, five main implementation techniques are employed.

1. Arrays store their elements in the (indexable) instance variables of the collection
object itself; as a consequence, arrays must be of a fixed size, but can be created
with a single memory allocation.

2. OrderedCollections andSortedCollections store their elements in an array that is
referenced by one of the instance variables of the collection object. This means that
the internal array can be replaced with a larger one if the collection grows beyond
its storage capacity.

3. The various kinds of set and dictionary also reference a subsidiary array for storage,
but use the array as a hash table. Bags use a subsidiaryDictionary, with the elements
of the bag as keys and the number of occurrences as value.

4. LinkedLists use a standard singly-linked implementation.

Applying Traits to the Smalltalk Collection Hierarchy 11

Ordered Unordered

Accessible by Index Not Indexable Accessible by Key Not Keyed

Interval
SortedCollection
Array
ByteArray
OrderedCollection

LinkedList Dictionary
IdentityDictionary
PluggableDictionary

Set
IdentitySet
PluggableSet
Bag
IdentityBag

Arrayed
Implementation

Ordered
Implementation

Hashed
Implementation

Linked
Implementation

Interval
Implementation

Array OrderedCollection
SortedCollection

Set
IdentitySet
PluggableSet
Bag
IdentityBag
Dictionary
IdentityDictionary
PluggableDictionary

LinkedList Interval

Fig. 5.Some collection classes categorized by implementation technique.

5. Intervals are represented by three integers that record the bounds and the step size.

Readers interested in learning more about the Smalltalk collections are referred to
LaLonde and Pugh’s excellent book [LP90]

6 Analysis of the Smalltalk Collection Hierarchy

This section presents the results of an analysis of the collection hierarchy as it existed
before our refactoring. It shows that the collection hierarchy contains unnecessary in-
heritance, duplicated code, and other shortcomings.

Given the many dimensions on which the Smalltalk collection classes can be cate-
gorized, it is inevitable that any attempt to organize them into a single inheritance hier-
archy will run into severe difficulties. As Cook[Coo92] showed, the hierarchy attempts
to maximize reuse at the expense of conceptual categorization, with the consequence
that, for example,Dictionary is a subclass ofSet because it shares much of the same
implementation, even though it does not share the same interface.

Another way that the designers of the hierarchy attempted to maximize reuse was to
move methods high up, so that all possible client classes have a chance to inherit them.
For example,collect: is implemented inCollection, but the implementation is appropri-
ate only for those collections that understandadd:. Consequently, this implementation is
overridden by the abstract classSequenceableCollection in favor of an implementation
usingat:put:. This second implementation is inherited by all of theArrayedCollections,
but also byOrderedCollection andSortedCollection, for which it is not appropriate, and
which override it again. All told, there are 10 implementations ofcollect: in the collec-
tions hierarchy.

The following subsections examine these effects more systematically.

6.1 Unnecessary Inheritance in the Collection Hierarchy

Inheritance is used quite heavily in the collection classes, mostly for sharing implemen-
tation, but also for classification[Coo92]. As a measure of the complexity of the inher-
itance relationships, we counted the number of inheritance chains in which a message
has three or more methods defined on it. Figure 6 illustrates two examples: the methods

12 Andrew Black, Nathanael Schärli, and St́ephane Ducasse

at:put: andadd: in the inheritance chains terminating in the classWeakValueDictionary.
We found 79 such inheritance chains.

Fig. 6.Redefinition ofat:put: andadd: in the superclasses ofWeakValueDictionary

There is nothing intrinsically wrong with re-defining a method inherited from one’s
superclass. On the contrary, the ability to usesuper to call the inherited definition from
within the new method gives inheritance much of its power, and many people consider
that adding behavior before or after a super-send is the epitome of inheritance-oriented
programming.

However, for the most part, redefinition usingsuper is not what is going on here.
A total of 258 methods are involved in the 79 method redefinition chains mentioned
above. Since 79 methods are at the top of a chain, 258− 79 = 179 methods have the
opportunity of sending tosuper ; only 15 actually do so. Neither are these redefini-
tions examples of “hook” methods that are being used to parameterize the behavior of
a template method [ABW98]: all of the redefined methods are part of the functional in-
terface. We deduce that for the most part these redefinitions arecorrecting, rather than
augmenting, the behavior of the inherited method so that it is appropriate for the new
subclass. In other words, we have identified 164 places where a method was inherited
unnecessarily.

What is the problem with unnecessary inheritance? The cost is not in execution time
nor in code space but in lost development time. The task of understanding a class that
inherits several methods but does not use them is more complicated than necessary.
Inheritance is often considered to be an aid to understanding a complex class, since the

Applying Traits to the Smalltalk Collection Hierarchy 13

programmer can work down the inheritance chain, comprehending only thedifferences
between a subclass and its superclass, rather than having to comprehend the entirety of
the final subclass in a single step. To the extent that methods are inherited unnecessarily,
this process is made more difficult, and inheritance begins to hinder rather than assist
in understanding legacy code.

6.2 Code Duplication in the Collections Hierarchy

When a new subclassdoeswant to re-use a method from an existing class, it may never-
theless be unable to do so because of the restrictions implied by the arrangement of the
classes in a hierarchy. For example,PluggableSet andPluggableDictionary share some
methods, but there is no place from which they could inherit them.PluggableDictionary
is a subclass ofDictionary, andPluggableSet is a subclass ofSet; there is no appro-
priate common superclass in which methods shared by the two pluggable classes can
be placed. There is aninappropriatesuperclass:Set. The programmer is left with the
choice of placing a method too high in the hierarchy, or duplicating it. This point is
discussed further in section 7.2.

There is no easy way to ascertain how much duplication is caused by the fact that
methods can be inherited only from a superclass. We made a superficial check by look-
ing for methods whose decompile strings were identical. This detected as duplicates
methods that differed only in formatting, comments, or the names of temporary vari-
ables. We also excluded error methods such asself shouldNotImplement, which is used
to cancel an inherited method. In this way we found 28 pairs of duplicated methods, and
3 triples. In a few cases the duplication was gratuitous, that is, a subclass duplicated a
method from its superclass when it could in fact have inherited it. (For example,Set and
WeakSet both definesize identically, even thoughWeakSet inherits fromSet.) How-
ever, in most cases, the duplication was of a method from another part of the hierarchy,
which consequently could not be inherited, or of a method defined in a superclass’ su-
perclass. For example, Dictionary and Collection both implementoccurrencesOf: iden-
tically, but even though Dictionary is a subclass of collection, there is an intervening
definition ofoccurrencesOf: in Set that prevents Dictionary from reusing the definition
in Collection.

However, these duplication counts are almost certainly just the tip of the iceberg.
Our primitive duplicate detection technique certainly misses many methods that differ
in structure but not in semantics. For example, if two methods compare x and y for
equality, but one expresses this asx = y while the other usesy = x, this duplication will
not be revealed by our search. During our refactoring of the collections classes we also
noticed many deeper examples of code duplication, where a method had clearly been
copied from an established class into a newly created class, and then a single crucial
statement had been changed to obtain a different semantics. The right way to avoid this
sort of duplication is to refactor the original method so that the crucial statement is a
parameter of some kind, either by adding an explicit argument to the method or, more
commonly, by transforming the crucial statement into a send of a new message toself .
The refactored version can then be reused in both the original and the new contexts,
with different values for the parameter. Unfortunately, this refactoring is only possible

14 Andrew Black, Nathanael Schärli, and St́ephane Ducasse

if the newly created class is a subclass of the established class — a condition that cannot
always be met.

6.3 Conceptual Shortcomings in the Collection Hierarchy

In addition to these problems in theimplementationof the collection classes, the hier-
archy also suffers from some conceptual shortcomings.

One of the reasons that there are so many collection classes is that the designers
have attempted to compensate for the fact that classes are hard to reuse by providing
all possible combinations of features. For example, Sets, Bags and Dictionaries must
compare elements (or keys) for equality. Thus, each structure needs three variants: one
that that uses= between elements, one that uses==, and one that uses an equality func-
tion that is “plugged in” when the structure is created. Thus, we have the three classes
Set, IdentitySet, andPluggableSet; the same is true for Dictionary and Bag, except that
PluggableBag is missing. A similar situation exists with the “weak” variants of the col-
lection classes, which hold onto their elements weakly,i.e., in a way that does not pre-
vent them from being garbage collected. It would be nice if these characteristics could
be captured as reusable components, so that programmers could combine pluggability
with, say, SkipLists, so that they could build the data structure that suits their applica-
tion. This would simultaneously simplify the collection hierarchy (by eliminating the
combinatorial explosion of features)andgive the programmer the flexibility to choose
from a wider range of collections.

Immutability is a “feature” not provided in the current hierarchy except in a few
special cases. Symbols and Intervals are currently the only immutable collections, but
immutable collections can be useful in many contexts. Strings are almost always used
as if they are immutable, as are literal arrays, but this cannot be captured by the current
set of classes.

The stream classes also exhibit many orthogonal features, such as read vs. write,
binary vs. text, positionable (seekable) or not-positionable. The more necessary com-
binations are implemented by duplicating code; many other combinations are simply
unavailable.

Finally, we mention that collection-like behavior is often desired for objects that
are not primarily collections. For example, the classPath is a subclass ofDisplayObject
and thus not able to inherit fromCollection. A Path represents an ordered sequence of
points; arcs, curves, lines and splines are all implemented as subclasses ofPath. Path
implements some of the more basic kinds of collection-like behavior; for example, it
has methods forat:, at:put:, andcollect:. But Path doesnotattempt to implement the full
range of collection behavior, for example,Path does not provide methods forselect:
and do:. There are simply too many such methods to make it viable to reimplement
them, and the existing implementation cannot be reused. Section 7.3 discusses how
traits address this problem.

7 Results

In this section we present the collection hierarchy that emerged from our refactoring ef-
forts. We start by describing how we distributed behavior from the pre-existing abstract

Applying Traits to the Smalltalk Collection Hierarchy 15

and classes into traits, and how those traits are used to construct a new set of classes.
We then analyze the new hierarchy with respect to code duplication, possibilities for
reuse and other issues.

Fig. 7. The refactored collection hierarchy. Classes with italicized names are abstract; below the
class name we show the top-level traits from which the class is composed. Each of these traits is
in turn composed from several subtraits.

7.1 The New Collections Hierarchy

Figure 7 shows the new hierarchy for 13 common concrete collection classes and 6 ab-
stract superclasses. This is as far as our refactoring has progressed to date. In addition
to the name of each class, it also shows the traits from which the class is composed.
The classes are divided in three layers. At the top of the hierarchy is the abstract class
Collection, which is composed from two traits, and provides a small amount of behavior
for all collections. Then we have a layer of 5 abstract classes that represent different
combinations of the externally visible properties of collections. We call these proper-
ties functional, to distinguish them from implementation properties. At the bottom, we
have 13 concrete classes that inherit from the functional classes and also use a trait that

16 Andrew Black, Nathanael Schärli, and St́ephane Ducasse

specifies an implementation.We now describe the functional properties and the imple-
mentation traits in turn.

The Functional Traits. Each kind of collection can be characterized by several dif-
ferent properties such as being explicitly ordered (e.g., Array), implicitly ordered (e.g.,
SortedCollection), unordered (e.g., Set), extensible (e.g., Bag), immutable (e.g., Inter-
val), or keyed (e.g., Dictionary); see section 5.1 for more discussion.

Although single-inheritance is not expressive enough to represent such a diverse set
of classes that share many different properties in various combinations, trait composi-
tion works well for this task. All that was necessary was to create a trait for each of
these properties and then combine them to build the abstract classes shown in Figure 7.
In order to achieve maximal flexibility, we ensured that the combinations of property
traits are available in two forms: as traits that can be reused outside of the collection
hierarchy, and as superclasses that can be inherited within it.

We also modularized the primitive properties more finely than would have been
necessary if our only goal were to avoid code duplication. The fine structure gives us
and future programmer more freedom to extend, modify and reuse parts of the new
hierarchy. In addition, some of the property traits contain many methods, and creating
subtraits corresponding to individual sub-properties gives them internal structure that
makes them easier to understand. Because of the flattening property, there is no cost to
this fine-grained structure: it is always possible to flatten it out and to work with the
code in a less structured view.

Figure 8 shows how the composite property traits are built from each other and
from the more primitive traits. We use the following naming convention. Some names
have a suffix, which may consist of letters from the sets{S, U} and{M, I}. The letter
‘S’ indicates that all of the methods in the trait require the collection to be sequenced,
whereas ‘U’ means that none of the methods in the trait requires the collection to be se-
quenced. Similarly, ‘M’ means that all the methods require the collection to be mutable,
and ‘I’ means that no method requires the collection to be mutable. If the suffix does
not contain a letter from one of these groups, the trait contains some methods with each
characteristic.

As an example, the traitTEnumerationUI contains the part of the enumeration be-
havior that does not require sequencing (‘U’), whereasEnumerationI — which uses the
trait TEnumerationUI as a subtrait — contains some methods that do require and some
methods that do not require sequencing. Furthermore, all of the methods in both of these
traits treat the target object as immutable (‘I’).

The Implementation Traits. Besides the functional property traits, which are visible
to a client, each collection class is also characterized by an implementation, which is
hidden. The functional and implementation traits are largely independent.

The refactored hierarchy separates the traits specifying the implementation of a col-
lection from the traits specifying the functional properties. This allowed us to freely
combine different functional property traits (e.g., TExtensibleSequencedExplicitly and
TExtensibleSequencedImplicitly) with any of the suitable implementations (e.g., the
linked-list implementation and the array-based implementation). In one place we also

Applying Traits to the Smalltalk Collection Hierarchy 17

Fig. 8. The traits corresponding to composite functional properties are built from each other and
from the more primitive traits. Each of the boxes represents a compound trait; the subtraits from
which it is composed are listed in the bottom part of the box. Nesting of traits is indicated with
indentation. If a subtrait is shown in the figure, its use is also indicated by an arrow. Thus,TExten-
sibleUnsequenced is composed fromTUnsequenced andTExtensibleU. TUnsequenced is
shown in the figure, so there is an arrow fromTExtensibleUnsequenced to TUnsequenced.
(TExtensibleU is primitive, and is not shown in the figure.)

18 Andrew Black, Nathanael Schärli, and St́ephane Ducasse

extended the functionality of a concrete class: ourLinkedLists are indexable,i.e., they
understandat:.

Fig. 9. Composition of the implementation traits. The seven implementation traits (TOrdered-
Impl, TSortedImpl, ...TDictionaryImp) at the bottom of the figure are composed
from the reusable fragments shown at the top (TInstanceCreationImpl, TArrayBased-
Impl,...TBasicImpl). Thus,TDictionaryImpl is constructed by adding some local definitions to
the subtraitTHashedImpl.

Figure 9 shows how the implementation traits used for creating the concrete classes
shown in figure 7 are composed from subtraits representing more primitive implemen-
tation properties. The primitive traits are shown near the top of the figure; their main
purpose is to allow the composite implementation traits shown near the bottom of the
figure to share methods. As an example, we factored out the behavior for creating new
instances (new, with:, withAll:, etc.) into the traitTInstanceCreationImpl, which is then
used byTOrderedImpl and four other implementation traits.

The trait TBasicImpl contains default implementations for methods likeincludes:
andhash. These defaults are written so as to be independent of the implementation of
the underlying collection, but may be unnecessarily slow for certain implementations.
For example,includes: is implemented usinganySatisfy:; this is always correct, but is
O(n), whereas the hashed implementation should make this operationO(1). Instead of
usingTBasicImpl as a subtrait of all the concrete implementation traits, we decided to
use it in the root class of the collection hierarchy, from where its methods are inher-
ited (and possibly overridden) by the various concrete implementations. For example,
THashedImpl andTIntervalImpl have their own implementations ofincludes:.

Applying Traits to the Smalltalk Collection Hierarchy 19

7.2 Quantitative Assessment of the Refactored Hierarchy

The refactored part of the class hierarchy shown in Figure 7 contains 13 concrete classes
and 6 abstract classes, which use a total of 46 traits. Each classes is composed of be-
tween 0 and 20 subtraits. The total number of methods is 509 (of which 36 are auto-
matically generated accessor methods). This is just over 5 per cent fewer methods than
in the equivalent part of the original hierarchy, which contains 540 methods. If we do
not count the automatically generated accessor methods, which are not present in the
original implementation because instance variables are accessed directly, our imple-
mentation contains 12.4 per cent fewer methods.

This number corresponds quite closely to the observed reduction in total size of the
code. The refactored implementation is 10 per cent smaller than the original implemen-
tation if we measure bytecode, or 12 per cent if we measure source code4. Part of the
size reduction is caused by eliminating duplicate methods. Whereas our primitive de-
tection of code duplication identified 18 duplicate methods in the part of the original
implementation that we refactored, we could not find any duplicates in new one.

The reduction in code size is even more remarkable considering that 57 (over 10
per cent) of the methods in the original implementation are placed “too high” in the
hierarchyspecifically to enable code sharing. The penalty for this is the repeated need
to cancel inherited behavior. In the part of the original hierarchy that we refactored,
9 messages are explicitly disabled in subclasses by implementing methods that cause
a runtime error (typicallyself shouldNotImplement). More problematic are another 48
methods that areimplicitly disabled because they directly or indirectly call explicitly
disabled methods.

This tactic does avoid the need to duplicate code, but the cost is that the whole
hierarchy is very much harder to understand. For example, the methodaddAll: is im-
plemented inCollection with a method that sendsself add: for each element of the
argument. Consequently, itappearsthat every collection understandsaddAll:, although
an attempt to use this method on, say, an array, will always cause a runtime error. In
the trait implementation, there is no need to resort to this tactic: each method is present
in exactly the classes that need it, and in no others. This makes the classes much easier
for a programmer to understand: browsing the protocol of a class tells her exactly what
methods are available for use.

7.3 Subjective Assessment of the Refactored Hierarchy

Besides the quantitative improvements in the refactored part of the collection hierarchy
noted above, the trait implementation has other advantages that will have impact both
inside and outside the collection hierarchy.

We will certainly be able to reuse many of our traits when we extend our refactoring
to other parts of the existing hierarchy. In addition, the traits that we have written will
allow us to construct new kinds of collection by just composing the necessary traits and
implementing a few glue methods. For example, we can build a classPluggableBag

4 We measured source code size by decompiling the methods. This excludes comments and
automatically adjusts for differences in formatting, naming of variables, and so on

20 Andrew Black, Nathanael Schärli, and St́ephane Ducasse

by simply using the traitPluggableAdaptor in a subclass ofBag, and we can create
immutable variants of collections by omitting the mutable interface traits.

Thus, as we continue this project and refactor even more of the collection hierarchy,
we expect to see anincreasingpercentage reduction in code size as we apply the same
reusable traits to remove code from more and more classes. In addition, the availability
of these traits frees the implementors of the hierarchy from the need to ship pre-built
collection classes for rarely used special cases. Instead, the main responsibilities of the
implementor of the hierarchy become the implementation of (1) a basic class hierarchy
that contains the more common collection classes and (2) a set of well-designed set of
traits that can be composed with these classes. Using this basis, another programmer can
then easily recompose the traits in order to build her own special-purpose collections.

Another advantage of the new hierarchy is that some of the traits can be usedout-
sideof the collection hierarchy. As an example, the traitTEmptiness, which requires
size and providesisEmpty, notEmpty, ifEmpty:, isEmptyOrNil ifEmpty: andifNotEmpty:,
can be used inany class that definessize. Similarly, the traitTEnumerationUI can be
used to provide a class with 24 methods from the enumeration protocol, provided that
it implementdo:, emptyCopyofSameSize, anderrorNotFound. Why is this important?
We believe that much of the power of the object-oriented paradigm comes from hav-
ing manydifferent objects understand thesameprotocol in corresponding ways. For
example, it can be quite frustrating to find that aSoundBuffer, although it understands
size andisEmpty, doesnot understandifEmpty:. The availability of fine-grained traits at
last makes it possible to make protocols more uniform across all of the classes in the
system, with no cost in code size or maintainability, and with areductionin the effort
required to find ones way around the system.

7.4 Discussion

The availability of both trait composition and single inheritance gave us a lot of freedom
in designing the new collection hierarchy. One possible approach would have been to
use trait composition exclusively and to minimize the use of inheritance. If we had done
this, all the concrete collection classes would have been built using trait composition
alone, and every collection class would be a direct subclass ofObject (or of an empty
common superclassCollection that is a direct subclass of object).

However, we decided against this approach and used both single inheritance and
trait composition in the new hierarchy. This makes the hierarchy easier to understand
and extend by programmers who are familiar with single inheritance code, and espe-
cially for programmers who know the old collection hierarchy. Indeed, looking at our
hierarchy in the flattened view, it exhibits a structure quite similar to the old hierarchy,
although the abstract superclasses do not correspond one-to-one.

Single-inheritance also turns out to be well-suited for explicitly representing a func-
tional property layer with abstract classes and a implementation layer with concrete
classes. This is particularly true because the separation between functional methods
and implementation methods is not always very clear. For example, it is sometimes the
case that a particular implementation trait defines a optimized variant of a method that
is generically defined in a functional trait. Because the concrete classes arecomposed
from the implementation traits butinherit from the functional traits, we can be sure that

Applying Traits to the Smalltalk Collection Hierarchy 21

in these situations the implementation methods override the functional methods. Thus
there are no method conflicts, and therefore no need to resolve them.

8 Lessons Learned

While conducting this experiment we learned a number of things about traits and our
programming tools, and also some more general things about refactoring.

Traits Simplify Refactoring. Using traits, refactoring a major hierarchy such as the
Smalltalk collections is not as hard a task as one might think. We are not wizards, and
we did not have a very clear plan, when we started, of where we would end up. Instead,
we just started pair programming, doing the simplest thing that could possibly work,
until we found that it didn’t work — at which point we did something just slightly more
sophisticated.

When we started dragging methods out of existing classes and dropping them into
traits, it was quite easy to identity the necessary traits. We had a superficial familiarity
with the Smalltalk collection classes, and had re-read Cook’s 1992 study[Coo92]. So
we expected to find traits related to the five different implementations and the major
categories of functionality described in section 5.1. When we found a method that did
not seem to fit into one of the traits that we had already defined, we simply created a
new trait. Often, the hardest part was finding appropriate names for the traits; this is im-
portant and difficult, and the naming scheme used in this paper can surely be improved
upon, even though it represents our third or fourth attempt.

Tools are Important. During the refactoring project, both the standard Smalltalk pro-
gramming tools (which allow one to look at not just classes but also all the implemen-
tors of and senders of a particular message) and the trait specific tools (abstracting away
from instance variables, viewing unsatisfied requirements, being able to move a method
and have instance variable accesses automatically turn into message sends,etc.) turned
out to be an enormous help. It was particularly useful to know that the nesting of traits
does not change anything about the semantics of the methods. Thus, we could consider
our refactoring task as simply grouping the existing collection behavior into coherent
traits. For each of the newly constructed traits, therequirescategory in the browser
always showed us which methods were missing in order to make the trait complete.
Naturally, some of these missing methods belonged in other traits; we simply continued
adding methods to the trait untilall of the unsatisfied requirements belonged in other
traits.

Use Fine-grained Components.As our refactoring progressed, we realized that the
methods in the collection hierarchy could be grouped into traits at a much finer granu-
larity than we had initially thought. Given good tools, traits do not impose any cost for
the finer-grained structure: we didn’t have to make the trade-off between the elegance
of the implementation and the understandability and usability of the functional interface
that characterizes both mixins and multiple inheritance.

22 Andrew Black, Nathanael Schärli, and St́ephane Ducasse

Defer the design of the Class Hierarchy.Getting a class hierarchy “right” is known to
be hard. The problem is that one is usually forced to make decisions too early, before
enough is known about the implementation.

Our response was to put off making decisions for as long as possible, which turned
out to be almost to the end of the refactoring. Since this was our first large project using
traits, we had not yet developed a very clear feeling for the optimal balance between
trait composition and inheritance. However, the theoretical properties of traits made us
confident that things would turn out well in the end, provided that we collected behavior
into logically coherent traits. Whether these traits would eventually be combined into
complete classes or be used to build a deep hierarchy of abstract and concrete classes
did not matter, because we knew that trait composition and inheritance could be freely
combined.

Once we had built the first few implementation and interface traits, it became ob-
vious how to combine them. The more we combined traits, the more important the
flattening property became. However, we also realized the importance of the structured
view, because it shows the traits from which a class is composed and how they are
interconnected.

To summarize: we were able to put off the hard decisions until we knew enough
about the system to make them correctly. This was because of the combination of

– a language technology with the right properties (flattening), and
– a set of tools that exploited those properties to provide multiple views on the pro-

gram.

9 Related Work

The work presented here was inspired in part by Cook’s study of interface conformance
and implementation inheritance in the Smalltalk-80 collection classes [Coo92]. Cook
first extracts an interface hierarchy based on conformance[BHJ+87,Car88] between the
sets of public methods of the various classes. Then, to solve problems raised by mes-
sages being interpreted differently in different classes, he writes formal specifications
for the methods and corrects some method names. Cook’s results shows that there is
a wide divergence between the inheritance mechanism used to build the hierarchy and
the conformance relationship between the interfaces.

Our work is complementary to Cook’s. We did not attempt to merge the implemen-
tation and conformance hierarchies. Instead we moved almost all of the implementation
into traits, where it can be widely reused; this frees the inheritance hierarchy to capture
conformance.

Few other workers have reported measurements of the impact of mixin-like ab-
stractions on non-trivial class hierarchies. Moore reports on the use of a “self improve-
ment” tool called Guru, which automatically restructures inheritance hierarchies and
also refactors the methods in Self programs [Moo96]. Moore applies Guru to theindex-
ables, a fragment of the Self library that includes strings, vectors and sequences, and
which contains 17 objects (most of which play the role of classes). The restructured ver-
sion of the hierarchy reduced the number of methods from 316 to 311, and the number

Applying Traits to the Smalltalk Collection Hierarchy 23

of overridden methods from 86 to 72. However, his method-level refactoring introduced
79 additional methods.

Moore’s analysis finds some of the same problems with inheritance that we have de-
scribed in this paper, and also notes that sometimes it is necessary to manually move a
method higher in the hierarchy to obtain maximal reuse. Our work differs from Moore’s
in that he uses a tool toautomaticallyrestructure and refactor inheritance hierarchies,
whereas we developed a new language concept and associated tools tosupport the pro-
grammerin writing better (e.g., less duplicative) and more reusable code in the first
place. Our focus is on improving understandability; Moore’s approach, used by itself,
may have a negative impact on understandability, because it introduces methods with
generated names. However, it would be very interesting to adapt the techniques used in
Guru to help the programmer identify traits by, for example, identifying duplication in
an existing hierarchy.

Our work also shares some similarity with research efforts in hierarchy reorganiza-
tion and refactoring. Casais [Cas91,Cas92] proposes algorithms for automatically reor-
ganizing class hierarchies. These algorithms not only help in handling modifications to
libraries of software components, but they also provide guidance for detecting and cor-
recting improper class modelling. Dicket al.propose a new algorithm to insert clasess
into a hierarchy that takes into account overridden and overloaded methods [DDHL96].
The key difference from the results presented here is that all the work on hierarchy re-
organization focuses on transforming hierarchies using inheritance as the only tool. In
contrast, we are interested in exploring other mechanisms, such as composition, in the
context of mixin-like language abstractions.

Refactorings — behaviour preserving code transformations — have become an im-
portant topic in the object-oriented reengineering community [RBJ97,TB99,TDDN00].
Research on refactoring originates from the seminal work of Opdyke [Opd92] in which
he defined refactorings for C++ [JO93,OJ93]. In this context, Tokuda and Batory [TB99]
evaluate the impact of using a refactoring engine in C++. Fanta and Rajlich report on a
reengineering experience where dedicated tools for the refactoring of C++ were devel-
oped [FR98]. However, they do not analyse the two versions of their code to compare
the degree of reuse.

Some other languages do have constructs similar to traits, although they differ in
some important details, which we believe limit reuse compared to traits. (A study of
this issue is available in a companion paper [SDNB02a]). The language Self [US87]
even uses the name “traits”, although Self traits are basically objects that play the role
of method dictionaries shared by prototypes. Strongtalk is a typed version of Smalltalk
implemented using mixins at a deep level. However, to the best of our knowledge there
has been no scientific study evaluating the level of code reuse engendered by such
approaches.

10 Future work

This paper is a report of work in progress. We plan to continue the refactoring effort,
including more of the collection classes and some of the stream classes, and see if the
further reduction in code size that we have predicted actually materializes. We would

24 Andrew Black, Nathanael Schärli, and St́ephane Ducasse

also like to conduct a more sophisticated analysis of code duplication, perhaps using a
tool such as Duploc [DRD99] or Guru (see section 9).

A thorough testing of the new collection classes is also necessary. We believe that
this can be accomplished using a random test generator and the existing classes as a test
oracle.

We are very pleased with how well the tools that we have built actually support
the process of programming with traits. There are naturally a few missing features. For
example, when examining a class in the traits browser, its subtraits are immediately
visible, but the subtraits of the subtraits are not. Examining the sub-subtraits requires a
double-click and a switch to another context. It would be better if the browser supported
hierarchic lists that could be opened and closed at any level. In addition, some of the
ordinary Smalltalk tools need to be enhanced to deal with traits. We plan to continue our
tool development, and also to add “trait awareness” to some of the standard Smalltalk
programming tools.

We also expect our experience with traits to feed back into the design of traits
themselves. We do not consider traits as just another programming construct, but as
an enabling technology for a grander vision called multi-view programming, which is
gradually being realized in the Perspectives project [BJ00].

Refactorings that can be expressed in a language can be thought of as defining
equivalence relations; each such equivalence has the potential to raise the level of ab-
straction of the programming process to that of the induced equivalence classes. A new
language technology like traits, which greatly extends the range of possible refactor-
ings, also defines a new set of equivalence classes, and thus permits programming at a
more abstract and powerful level. However, a fuller discussion of these possibilities is
outside of the scope of this paper.

11 Conclusion

We undertook this refactoring primarily to obtain some practical experience with the
use of traits. We believed that the theoretical properties that we had given to traits —
especially flattening, but also the annihilation of conflicting methods in the symmetric
sum — were the right ones. But programing languages are too, and theoretical elegance
is no substitute of usability. Only extensive use on a realistic codebase could validate
these beliefs.

It did. We were even surprised with how well the tools and the trait concepts worked
in practice. The theoretical characteristics do really seem have the practical benefits for
which they were designed.

However wonderful a language technology may be to those who use it, new lan-
guage features can be a real obstacle to those who have not previously met it. One of
the pleasant properties of traits is that we took great care not to change the method-level
syntax of Smalltalk at all. Thus, an ordinary Smalltalk programmer can open an ordi-
nary Smalltalk browser on our new hierarchy and understand everything that she sees.
All of the concrete classes will be there, with all of their methods. The methods will
appear to be defined directly in a subclass or inherited from a superclass exactly as in
ordinary Smalltalk, and the semantics will be exactly the same. If a method is modified

Applying Traits to the Smalltalk Collection Hierarchy 25

in a conventional class view, and the method is actually defined in a shared trait, then
the effect will be to to define a customised version of the shared method local to the
class. Again, this is exactly the semantics of ordinary Smalltalk.

This property is critically important, because we believe that one of the reasons
that previous technologies such as mixins and multiple inheritance have not become
popular is because of the complexity that they force on every programmer. For exam-
ple, the rules for linearising multiple inheritance chains must be understood by every
programmer who looks at or modifies a multiple inheritance hierarchy.

While these results validated our expectations, there were also some surprises. For
example, it turned out that the fine-grained nesting structure has only advantages. Not
only does it allow better code reuse, but it also assists in program understanding, be-
cause it makes it easier to see how something is built up. However, this is only true as
long as the flattened view is also available. We are not experts in human perception, but
all the evidence that we have seen indicates that humans grasp things more quickly and
more accurately if they can observe them though different views.

Another surprise was that the refactoring process turned out to be quite enjoyable
and very straightforward. Trait-based refactoring seems to compatible with an extreme
programming style of development, because it does not require one to do all of the
design “up front”, when one knows nothing about the system, but lets one start by
identifying related methods and putting them into traits. The shape of the inheritance
hierarchy can emerge later.

Good tool support proved to be critical: it had a tremendous impact on the efficiency
of the refactoring task. It is hard to imagine undertaking this refactoring with an ordi-
nary Smalltalk browser that does not show therequiresandsuppliessets and that does
not support the abstract instance variable refactoring. Performing the same task with
with a traditional file-based tool such as emacs is inconceivable to us. The incremental
nature of the Smalltalk environment played an important role, because the current state
of the composition was instantly visible at all times.

To summarise: we have successfully refactored a significant fragment of the Smalltalk
collections classes. In the process we:

– removed code duplication;
– improved understandability;
– provided reusable traits that make it easier to write new collection classes; and
– made it possible to reuse collection codeoutsideof the collection hierarchy.

The second claim, improved understandability, is necessarily subjective. However,
we argue that twoobjectivefeatures of the refactored hierarchy support it. First, there
is no discrepancy between the apparent and actual interfaces of a class. In other words,
we never needed to resort to implementing a method “too high” in the hierarchy just
to enable reuse. As a consequence, when browsing the hierarchy, “what you see is
what you get”: all of the public methods in a class are actually available. Second, the
structured view (with fine grained traits) provides a lot of insight about the functional
properties of the methods: which are immutable, which require sequenceability, which
do enumeration and so on. Since the structured view containing this extra information
is optional, there is no tradeoff to be made in supplying it: programmers who do not
find it useful can simply not use it.

26 Andrew Black, Nathanael Schärli, and St́ephane Ducasse

AcknowledgementsThis work was initiated during a sabbatical visit by Andrew Black
to the University of Bern, and continued during a visit by Nathanael Schärli to OGI. We
would like to thank Oscar Nierstrasz and the other members of the Software Composi-
tion Group in Bern for making the sabbatical possible, and for being such intellectually
stimulating and congenial hosts. We also thank the National Science Foundation and
the late Professor Paul Clayton, then Provost of the Oregon Graduate Institute, for the
financial support that made the visits possible.

References

[ABW98] Sherman R. Alpert, Kyle Brown, and Bobby Woolf.The Design Patterns Smalltalk
Companion. Addison Wesley, 1998.

[BDMN73] G. Birtwistle, Ole Johan Dahl, B. Myhrtag, and Kristen Nygaard.Simula Begin.
Auerbach Press, Philadelphia, 1973.

[BHJ+87] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter. Distri-
bution and abstract data types in emerald.IEEE Transactions on Software Engineer-
ing, SE-13(1):65–76, January 1987.

[BJ00] Andrew P. Black and Mark P. Jones. Perspectives on software. InOOPSLA 2000
Workshop on Advanced Separation of Concerns in Object-oriented Systems, 2000.

[Car88] Luca Cardelli. A semantics of multiple inheritance.Information and Computation,
76:138–164, 1988.

[Cas91] Eduardo Casais.Managing Evolution in Object Oriented Environments: An Algo-
rithmic Approach. Ph.D. thesis, Centre Universitaire d’Informatique, University of
Geneva, May 1991.

[Cas92] Eduardo Casais. An incremental class reorganization approach. In O. Lehrmann
Madsen, editor,Proceedings ECOOP’92, volume 615 ofLNCS, pages 114–132,
Utrecht, the Netherlands, June 1992. Springer-Verlag.

[Coo92] William R. Cook. Interfaces and specifications for the smalltalk-80 collection
classes. InProceedings OOPSLA ’92, pages 1–15, October 1992.

[DDHL96] H. Dicky, C. Dony, M. Huchard, and T. Libourel. On automatic class insertion with
overloading. InProceedings of OOPSLA’96, pages 251–267, 1996.

[DRD99] St́ephane Ducasse, Matthias Rieger, and Serge Demeyer. A language independent
approach for detecting duplicated code. In Hongji Yang and Lee White, editors,
Proceedings ICSM’99 (International Conference on Software Maintenance), pages
109–118. IEEE, September 1999.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.Refac-
toring: Improving the Design of Existing Code. Addison Wesley, 1999.

[FR98] Richard Fanta and Vaclav Rajlich. Reengineering object-oriented code. InProceed-
ings of the International Conference on Software Maintenance, 1998.

[GR83] Adele Goldberg and David Robson.Smalltalk 80: the Language and its Implemen-
tation. Addison Wesley, Reading, Mass., May 1983.

[HT00] Andrew Hunt and David Thomas.The Pragmatic Programmer. Addison Wesley,
2000.

[JO93] Ralph E. Johnson and William F. Opdyke. Refactoring and aggregation. InObject
Technologies for Advanced Software, First JSSST International Symposium, volume
742 ofLecture Notes in Computer Science, pages 264–278. Springer-Verlag, Novem-
ber 1993.

[LP90] Wilf LaLonde and John Pugh.Inside Smalltalk: Volume 1. Prentice Hall, 1990.

Applying Traits to the Smalltalk Collection Hierarchy 27

[Moo96] Ivan Moore. Automatic inheritance hierarchy restructuring and method refactoring.
In Proceedings of OOPSLA ’96, pages 235–250. ACM Press, 1996.

[OJ93] William F. Opdyke and Ralph E. Johnson. Creating abstract superclasses by refac-
toring. In Proceedings of the 1993 ACM Conference on Computer Science, pages
66–73. ACM Press, 1993.

[Opd92] William F. Opdyke.Refactoring Object-Oriented Frameworks. Ph.D. thesis, Univer-
sity of Illinois, 1992.

[RBJ97] Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for Smalltalk.
Theory and Practice of Object Systems (TAPOS), 3(4):253–263, 1997.

[SDNB02a] Nathanael Schärli, St́ephane Ducasse, Oscar Nierstrasz, and Andrew Black. Traits:
Composable units of behavior. Technical Report CSE-02-012, OGI School of Sci-
ence & Engineering, Oregon Health & Science University, Beaverton, OR 97006,
USA, 2002. Submitted for publication, ECOOP 2003.

[SDNB02b] Nathanael Schärli, St́ephane Ducasse, Oscar Nierstrasz, and Andrew Black. Traits:
The formal model. Technical Report CSE-02-013, OGI School of Science & Engi-
neering, Oregon Health & Science University, Beaverton, OR 97006, USA, 2002.

[Tai96] Antero Taivalsaari. On the notion of inheritance.ACM Computing Surveys,
28(3):438–479, September 1996.

[TB99] Lance Tokuda and Don Batory. Automating three modes of evolution for object-
oriented software architecture. InProceedings COOTS’99, May 1999.

[TDDN00] Sander Tichelaar, Stéphane Ducasse, Serge Demeyer, and Oscar Nierstrasz. A meta-
model for language-independent refactoring. InProceedings ISPSE 2000, pages
157–167. IEEE, 2000.

[US87] David Ungar and Randall B. Smith. Self: The power of simplicity. InProceedings
OOPSLA ’87, volume 22, pages 227–242, December 1987.

