
Clustered Serialization with Fuel

Martín Dias13 Mariano Martinez Peck12 Stéphane Ducasse1 Gabriela Arévalo45

1RMoD Project-Team, Inria Lille–Nord Europe / Université de Lille 1
2Ecole des Mines de Douai, 3Universidad de Buenos Aires, 4Universidad Abierta Interamericana 5CONICET

{tinchodias, marianopeck, gabriela.b.arevalo}@gmail.com, stephane.ducasse@inria.fr

Abstract
Serializing object graphs is an important activity since ob-
jects should be stored and reloaded on different environ-
ments. There is a plethora of frameworks to serialize ob-
jects based on recursive parsing of the object graphs. How-
ever such approaches are often too slow. Most approaches
are limited in their provided features. For example, sev-
eral serializers do not support class shape changes, global
references, transient references or hooks to execute some-
thing before or after being stored or loaded. Moreover, to be
faster, some serializers are not written taking into account
the object-oriented paradigm and they are sometimes even
implemented in the Virtual Machine hampering code porta-
bility. VM-based serializers such as ImageSegment are dif-
ficult to understand, maintain, and fix. For the final user, it
means a serializer which is difficult to customize, adapt or
extend to his own needs.

In this paper we present a general purpose object graph
serializer based on a pickling format and algorithm. We im-
plement and validate this approach in the Pharo Smalltalk
environment. We demonstrate that we can build a really fast
serializer without specific VM support, with a clean object-
oriented design, and providing most possible required fea-
tures for a serializer. We show that our approach is faster
that traditional serializers and compare favorably with Im-
ageSegment as soon as serialized objects are not in isolation.

Keywords Object-Oriented Programming and Design »
Serializer » Object Graphs » Pickle Format » Smalltalk

1. Introduction
In the Object-Oriented Programming paradigm, since ob-
jects point to other objects, the runtime memory is an ob-
ject graph. This graph of objects lives while the system is
running and dies when the system is shutdown. However,
sometimes it is necessary, for example, to backup a graph of

[Copyright notice will appear here once ’preprint’ option is removed.]

objects into a non volatile memory to load it back when nec-
essary, or to export it so that the objects can be loaded in a
different system. The same happens when doing migrations
or when communicating with different systems.

Approaches and tools to export object graphs are needed.
An approach must scale to large object graphs as well as
be efficient. However, most of the existing solutions do not
solve this last issue properly. This is usually because there is
a trade-off between speed and other quality attributes such as
readability/independence from the encoding. For example,
exporting to XML [17] or JSON [9] is more readable than
exporting to a binary format, since one can open it and edit
it with any text editor. But a good binary format is faster
than a text based serializer when reading and writing. Some
serializers like pickle [14] in Python or Google Protocol
Buffers [15] that let one choose between text and binary
representation. Five main points shape the space of object
serializers

1. Serializer speed is an important aspect since it enables
more extreme scenarios such as saving objects to disk
and loading them only on demand at the exact moment
of their execution [3, 10].

2. Serializer portability and customization. Since many ap-
proaches are often too slow, Breg and Polychronopou-
los advocate that object serialization should be done at
the virtual machine level [4]. However, this implies non
portability of the virtual machine and difficult mainte-
nance. In addition, moving behavior to the VM level usu-
ally means that the serializer is not easy to customize or
extend.

3. Another usual problem is class changes. For example, the
class of a saved object can be changed after the object is
saved. At writing time, the serializer should store all the
necessary information related to class shape to deal with
these changes. At load time, objects must be updated in
case it is required. Many object serializers are limited
regarding this aspect. For example, the Java Serializer
[8] supports adding or removing a method or a field, but
does not support the modification of an object’s hierarchy
nor the removing of the implementation of the Serializable
interface.

4. Loading policies. Ungar [18] claims that the most impor-
tant and complicated problem is not to detect the sub-

1 2011/8/16

graph to export, but to detect the implicit information of
the subgraph that is necessary to correctly load back the
exported subgraph in another system. Examples of such
information are (1) whether to export an actual value or
a counterfactual initial value, or (2) whether to create a
new object in the new system or to refer to an existing
one. In addition, it may be necessary that certain objects
run some specific code once they are loaded in a new sys-
tem.

5. Uniformity of the solution. Serializers are often limited
to certain kind of objects they save. For example Msg-
Pack only serializes booleans, integers, floats, strings, ar-
rays and dictionaries. Now in dynamic programming lan-
guages e.g., Smalltalk, methods and classes as first class
objects – user’s code is represented as objects. Similarly
the execution stack and closures are objects. The natural
question is if we can use serializers as code management
system underlying mechanism. VisualWorks Smalltalk
introduced a pickle format to save and load code called
Parcels [12]. However, such infrastructure is more suit-
able for managing code than a general purpose object
graph serializer.

This paper presents Fuel, an open-source general purpose
framework to serialize and deserialize object graphs using
a pickle format which clusters similar objects. We show in
detailed benchmarks that we have the best performance in
most of the scenarios we are interested in. For example, with
a large binary tree as sample, Fuel is 16 times faster load-
ing than its competitor SmartRefStream, and 7 times faster
writing. We have implemented and validated this approach
in the Pharo Smalltalk Environment [2].

The pickle format presented in this paper is similar to the
one of Parcels [12]. However, Fuel is not focused in code
loading and is highly customizable to cope with different
objects. In addition, this article demonstrates the speed im-
provements gained in comparison to traditional approaches.
We demonstrate that we can build a fast serializer without
specific VM support, with a clean object-oriented design,
and providing most possible required features for a serial-
izer.

The main contributions of the paper are:

1. Description of our pickle format and algorithm.

2. Description of the key implementation points.

3. Evaluation of the speed characteristics.

4. Comparison of speed improvements with other serializ-
ers.

The remainder of the paper is structured as follows: Sec-
tion 2 provides a small glossary for the terms we use in the
paper. Section 3 enumerates common uses of serialization.
Features that serializers should support are stressed in Sec-
tion 4. In Section 5 we present our solution and an exam-
ple of a simple serialization which illustrates the pickling
format. Fuel key characteristics are explained in details in
Section 6. A large amount of benchmarks are provided in

Section 8. Finally, we discuss related work in Section 9 and
we conclude in Section 10.

2. Glossary
To avoid confusion, we define a glossary of terms used in
this paper.

Serializing. It is the process of converting the whole ob-
ject graph into a sequence of bytes. We consider the words
pickling and marshalling as synonyms.

Materializing. It is the inverse process of serializing, i.e.,
regenerate the object graph from a sequence of byes. We
consider the words deserialize, unmarshalling and unpick-
ling as synonyms.

Object Graph Serialization. We understand the same for
object serialization, object graph serialization and object
subgraph serialization. An object can be seen as a subgraph
because of its pointers to other objects. At the same time,
everything is a subgraph if we consider the whole memory
as a large graph.

Serializer. We talk about serializer as a tool performing
both operations: serializing and materializing.

3. Serializer Possible Uses
We will mention some possible uses for an object serializer.

Persistency and object swapping. Object serializers can
be used directly as a light persistency mechanism. The user
can serialize a subgraph and write it to disk or secondary
memory [11]. After, when needed, it can be materialized
back into primary memory [3, 10]. This approach does not
cover all the functionalities that a database provides but
it can be a good enough solution for small and medium
size applications. Besides this, databases normally need to
serialize objects to write them to disk [5].

Remote Objects. In any case of remote objects, e.g., re-
mote method invocation and distributed systems [1, 6, 19],
objects need to be passed around the network. Therefore,
objects need to be serialized before sending them by the net-
work and materialized when they arrive to destination.

Web Frameworks. Today’s web applications need to store
state in the HTTP sessions and move information between
the client and the server. To achieve that web frameworks
usually use a serializer.

Version Control System. Some dynamic programming
languages e.g., Smalltalk consider classes and methods
as first-class objects. Hence, a version control system for
Smalltalk deals directly with objects, not files as in other
programming languages. In this case, such tool needs to
serialize and materialize objects. This is the main purpose
behind Parcels [12].

Loading methods without compilation. Since classes and
methods are objects, a good serializer should be enable the

2 2011/8/16

loading of code without the presence of a compiler. This en-
able binary deployment, minimal kernel, and faster loading
time.

4. Serializer Features
In this section we enumerate elements to analyze a serializer.
We start with more abstract concerns and then follow with
more concrete challenges. We use these criteria to discuss
and evaluate our solution in Section 7.

4.1 Serializer concerns
Below we list general aspects to analyze on a serializer.

Performance. In almost every software component, time
and space efficiency is a wish or sometimes even a require-
ment. It does become a need when the serialization or ma-
terialization is frequent or when working with large graphs.
We can measure both speed and memory usage, either se-
rializing and materializing, as well as the size of the result
stream. We should also take into account the initialization
time, which is important when doing frequent small serial-
izations.

Completeness. It refers to what kind of objects can the
serializer handle. It is clear that it does not make sense to
transport instances of some classes, like FileStream or Socket.
Nevertheless, serializers often have limitations that restrict
use cases. For example, an apparently simple object like a
SortedCollection usually represents a problematic graph to
store: it references a block closure which refers to a method
context, and most serializers does not support transporting
them, often due to portability reasons.

Besides, in comparison with other popular environments,
the object graph that one can serialize in Smalltalk is much
more complex. This is because it reifies elements like the
metalevel model, methods, block closures, and even the ex-
ecution stack. Normally there are two approaches: for code
sharing, and for plain objects sharing.

Portability. There are two aspects related to portability.
One is related to the ability to use the same serializer in
different dialects of the same language. For example, in
Smalltalk one would like to use the same, or at least almost
the same, code for different dialects. The second aspect is
related to the ability of be able to materialize in a dialect or
language a stream which was serialized in another language.
This aspect brings even more problems and challenges to the
first one.

As every language and environment has its own partic-
ularities, there is a trade-off between portability and com-
pleteness. Float and BlockClosure instances often have incom-
patibility problems.

For example, Action Message Format (AMF), Google
Protocol Buffers, Oracle Coherence*Web, Hessian, are quite
generic and there are implementations in several languages.
In contrast, SmartRefStream in Squeak and Pharo, and
pickle [14] in Python are not designed with this goal in mind.
They just work in the language they were defined.

Abstraction capacity. Although it is always possible to
store an object, concretely serializing its variables, such a
low-level representation, is not acceptable in some cases.
For example, an OrderedCollection can be stored either as its
internal structure or just as its sequence of elements. The
former is better for an accurate reconstruction of the graph.
The second is much more robust in the sense of changes
to the implementation of OrderedCollection. Both alternatives
are valid, depending on the use case.

Security. Materializing from an untrusted stream is a pos-
sible security problem in the image. When loading a graph,
some kind of dangerous object can enter to the environment.
The user may want to control in some way what is being
materialized.

Atomicity. We have this concern expressed in two parts:
for saving and for loading. As we know, the image is full of
mutable objects i.e., that changes their state over the time.
So, while serialization process is running. It is desired that
when serializing such mutable graph it is written an atomic
snapshot of it, and not a potential inconsistent one. On the
other hand, when loading from a broken stream and so it can
not complete its process. In such case, no secondary effects
should affect the environment. For example, there can be an
error in the middle of the materialization which means that
certain objects have been already materialized.

Versatility. Let us assume a class is referenced from the
graph to serialize. Sometimes we may be interested in stor-
ing just the name of the class because we know it will be
present when materializing the graph. However, sometimes
we want to really store the class with full detail, including
its method dictionary, methods, class variables, etc. When
serializing a package, we are interested in a mixture of both:
for external classes, just the name, for the internal ones, full
detail.

This means that given an object graph living in the image,
there is not an unique way of serializing it. A serializer may
offer dynamic or static mechanisms to the user to customize
this behavior.

4.2 Serializer challenges
The following is a list of concrete issues and features we
consider in serializers:

Maintaining identity. When serializing an object we actu-
ally serialize an object graph. However, we usually do not
want to store the whole transitive closure of references of
the object. We know (or we hope) that some objects will be
present when loading, so we want just to store external refer-
ences, i.e., store the necessary information to be able to look
those objects in the environment while materializing.

In Figure 1 we have an example of a method, i.e., a Com-
piledMethod instance and its subgraph of references. Sup-
pose that the idea is to store just the method. We know that
the class and the global binding will be present on loading.
Therefore, we just reference them by encoding their names.

3 2011/8/16

Logger>>begin
Logger>>begin

Transcript show: 'hi!'

#Logger->Logger

#begin

Smalltalk globals

#Transcript-
>Transcript

#show
:

'hi!'

literalAt: 2

literalAt: 1

literalAt: 4
literalAt: 5

literalAt: 3

Figure 1. Serializing a method while maintaining identity
of its referenced classes and globals.

In other words, in this example we want to serialize a
method, maintaining identity of its class, the global Tran-
script, and the symbols. Consequently, when materializing,
the only instances that should be created are the compiled
method and the string. The rest will be looked up in the en-
vironment.

Transient values. Sometimes objects have temporal state
that we do not want to store, and we want an initial value
when loading. A typical case is serializing an object that has
an instance variable with a lazy-initialized value. Suppose
we prefer not to store the actual value. In this sense, declar-
ing a variable as transient is a way of delimiting the graph
to serialize. We are breaking the iteration through that refer-
ence.

There are different levels of transient values:

Instance. When only one particular object is transient. All
objects in the graph that are referencing to such object
will be serialized with a nil in their instance variable that
points to the transient object.

Class. Imagine we can define that a certain class is tran-
sient in which case all its instances are considered tran-
sient.

Instance variable names. This is the most common case.
The user can define that certain instance variables of a
class have to be transient. That means that all instances
of such class will consider those instance variables as
transient.

List of objects. The ability to consider an object to be tran-
sient only if it is found in a specific list of objects. The
user should be able to add and remove elements from that
list.

Cyclic object graphs and duplicates. Since commonly the
object graph to serialize has cycles, it is important to de-

tect them and take care to preserve objects identity. Sup-
porting that means decreasing the performance and increas-
ing the memory usage. This is because each iterated object
in the graph should be temporally collected: it is necessary
to check whether each object has been already processed or
not.

Class shape change tolerance. Often we need to load in-
stances of a class in an environment where its definition has
changed. The expected behavior may be to adapt the old-
shaped instances automatically when possible. We can see
some examples of this in Figure 2. For instance variable po-
sition change, the adaptation is straightforward. For exam-
ple, version v2 of Point changes the order between the in-
stance variables x and y. For the variable addition, an easy
solution is to fill with nil. Version v3 adds instance variable
distanceToZero. If the serializer also lets one to write custom
messages to be sent by the serializer once the materialization
is finished, the user can benefit from this hook to initialize
the new instance variables to something different that nil.

In contrast to the previous examples, for variable renam-
ing, the user must specify what to do. This can be done via
hook methods, or more dynamically, via materialization set-
tings.

x
y

Point (v1)
y
x

Point (v2)
y
x
distanceToZero

Point (v3)
posX
poY
distanceToZero

Point (v4)

Figure 2. Several kinds of class shape changing.

There are even more kinds of changes such as adding,
removing or renaming a method, a class or an instance
variable, changing the superclass, etc. As far as we know,
no serializer fully manage all these kinds of change. Ac-
tually, most of them have a limited number of supported
change types. For example, the Java Serializer [8] supports
the adding and the removing of a method or of a field, but
does not support changing an object’s hierarchy or removing
the implementation of the Serializable interface.

Custom reading. When working with large graphs or
when there is a large number of stored streams, it makes
sense to read the serialized bytes in customized ways, not
necessarily materializing all the objects as we usually do.
For example, if there are methods written in the streams, we
may want to look for references to certain message selec-
tors. Maybe count how many instances of certain class we
have stored. Maybe list the classes or packages defined or
referenced from a stream. Or to extract any kind of statistics
about the stored objects.

Partial loading. In some scenarios, especially when work-
ing with large graphs, it may be necessary to materialize only
a part of the graph from the stream instead of the whole
graph. Therefore, it is a good feature to simply get a sub-
graph with some holes filled with nil. In addition, the tool
could support some kind of lazy loading.

4 2011/8/16

Versioning. The user may need to load an object graph
stored with a different version of the serializer. Usually this
feature allows version checking so that future versions can
detect that a stream was stored using another version, and
act consequently: when possible migrate it, otherwise throw
an error message.

Alternative output format. Textual or binary: serializers
like pickle [14] in Python or Google Protocol Buffers [15] let
the user choose between textual and binary representation.
While developing, we can use the text based one, which is
easy to see, inspect and modify. Then, at production time,
we can switch to the faster binary format.

Alternative stream libraries. Usually, there are several
packages of streams available for the same programming
languages. For example, for Pharo Smalltalk there are
Xtreams, FileSystem, and Nile. A design that supports al-
ternative implementations is desired.

Graphical progress update. Object graphs can be huge
and so, the user has to wait until the process end. Therefore,
it is important to have the possibility to enable this feature
and show graphically the processing of the graph.

5. Fuel
In this section we present Fuel, a new framework to serialize
objects. Fuel is based on the hypothesis that fast loading
is always preferable, even it implies a slower serialization
process. Fuel clusters objects and separates relationships.

5.1 Pickle Formats
Pickle formats are efficient to support transport, marshalling
or serialization of objects [16]. Before going any further we
give a definition of pickle and give an example.

“Pickling is the process of creating a serialized represen-
tation of objects. Pickling defines the serialized form to in-
clude meta information that identifies the type of each object
and the relationships between objects within a stream. Val-
ues and types are serialized with enough information to in-
sure that the equivalent typed object and the objects to which
it refers can be recreated. Unpickling is the complementary
process of recreating objects from the serialized representa-
tion.” (extracted from [16])

5.2 Pickling a rectangle
To present the pickling format and algorithm in an intuitive
way, we show below an example of how Fuel stores a rect-
angle.

In Figure 3 we create a rectangle with two points that de-
fine the origin and the corner. A rectangle is created and then
passed to the serializer as an argument. In this case the rect-
angle is the root of the graph which also includes the points
that the rectangle references. The first step is to analyze the
graph starting from the root. Objects are mapped to clus-
ters following some criteria. In this example, the criteria is
’by class’, but in other cases it is ’is global object’ (it is at
Smalltalk dictionary), or ’is an integer between 0 and 216’.

FLDemo >> serializeSampleRectangleOn: aFileStream

| aRectangle anOrigin aCorner |
anOrigin := 10@20.
aCorner := 30@40.
aRectangle := Rectangle origin: anOrigin corner: aCorner.

(FLSerializer on: aFileStream) serialize: aRectangle.

Figure 3. Code snippet for our example to show how Fuel
serialization works.

Finally, in Figure 4 we can see how the rectangle is stored
in the stream. The graph is encoded in four main sections:
header, vertexes, edges and trailer. The ’Vertexes’ section
collects the instances of the graph. The ’Edges’ section con-
tains indexes to recreate the references of the instances. The
trailer encodes the root: a reference to the rectangle.

Even if the main goal of Fuel is to be fast in materializa-
tion, the benchmarks of Section 6 show that actually Fuel
is fast for both serialization and materialization. In the next
section, there are more details regarding the pickle format
and how the clusters work.

6. Fuel Key Characteristics
In the previous section, we explained the pickle format be-
hind Fuel, but that is not the only key aspect. The following
is a list of important characteristics of Fuel:

Grouping objects in clusters. Tipically serializers do not
group objects. Thus, each object has to encode its type at
serialization and decode it at deserialization. This is not only
an overhead in time but also in space. In addition, each object
may need to fetch its class to recreate the instance.

The purpose of grouping similar objects is to reduce the
overhead on the byte representation that is necessary to en-
code the type of the objects. The idea is that the type is
encoded and decoded only once for all the objects of that
type. Moreoever, if recreation is needed, the operations can
be grouped.

The type of an object is sometimes directly mapped to its
class, but the relation is not always one to one. For example,
if the object being serialized is Transcript, the type that will
be assigned is the one that represents global objects. For
speed reason, we distinguish between positive SmallInteger
and negative one. From a Fuel perspective they are from
different types.

Clusters know how to encode and decode the objects they
group. Clusters are represented in Fuel’s code as classes.
Each cluster is a class, and each of those classes has an
associated unique identifier which is a number. Such ID is
encoded in stream as we saw in Figure 4. It is written only
once, at the begining of a cluster instance. At materialization
time, the cluster ID is read and then the associated cluster is
searched. The materializer then materializes all the objects it
contains.

5 2011/8/16

Edges

Vertexes

Points reference to 10

reference to 20

reference to 30

reference to 40

Rectangles reference to anOrigin

reference to aCorner

Trailer root: reference to aRectangle

Header

clusters: 3

some extra info

version info

Points

className: 'Point'

variables: 'x y'

instances: 2

clusterID:
FixedObjectClusterID

SmallIntegers

instances: 4

10

20

30

40

clusterID:
PositiveSmallIntegerClusterID

Rectangles

className: 'Rectangle'

variables: 'origin corner'

instances: 1

clusterID:
FixedObjectClusterID

Figure 4. A graph example encoded with the pickle format.

Notice that what is associated to objects are cluster in-
stances, not the cluster classes. The ID is unique per cluster.
Some examples:

• PositiveSmallIntegerCluster is for positive instances of
SmallInteger. Its ID is 4. A unique Singleton instance
is used for all the objects grouped to this cluster.

• NegativeSmallIntegerCluster is for negative instances of
SmallInteger. Its ID is 5. Again, it is singleton.

• FloatCluster is for Float instances. Its ID is 6. Again, it is
singleton.

• FixedObjectCluster is the cluster for regular classes with
indexable instance variables and that do not require any
special serialization or materialization. Its ID is 10 and

one instance is created for each class, i.e.,FixedObjectCluster
has an instance variable referencing a class. One instance
is created for Point and one for Rectangle.

If we analyze once again Figure 4, we can see that there is
one instance of PositiveSmallIntegerCluster, and two instances
of FixedObjectCluster, one for each class.

It is important to understand also that it is up to the cluster
to decide what is encoded and decoded. For example, Fixe-
dObjectCluster writes into the stream a reference to the class
whose instances it groups, and then it writes the instance
variable names. In contrast, FloatCluster, PositiveSmallInte-
gerCluster or NegativeSmallIntegerCluster do not store such
information because it is implicit in the cluster implementa-
tion.

In Figure 4 one can see that for small integers, the cluster
directly writes the numbers 10, 20, 30 and 40 in the stream.
However, the cluster for Rectangle and Point do not write
the objects in the stream. This is because such objects are
no more than just references to other objects. Hence, only
their references are written in the ’Edges’ part. In contrast,
there are objects that contain self contained state, i.e., objects
that do not have references to other objects. Examples are
Float, SmallInteger, String, ByteArray, LargePositiveInteger, etc.
In those cases, the cluster associated to them have to write
those values in the stream.

The way to specify custom serialization or materializa-
tion of objects is by creating specific clusters.

Analysis phase. The common approach to serialize a
graph is to traverse it and while doing so to encode the ob-
jects into a stream. Fuel groups similar objects in clusters so
it needs to traverse the graph and associate each object to its
correct cluster. As explained, that fact significantly improves
the materialization performance. Hence, Fuel does not have
one single phase of traverse and writing, but instead two
phases: analysis and writing.

The analysis phase has several responsibilities:

• It takes care of traversing the object graph and it asso-
ciates each object to its cluster. Each cluster has a corre-
sponding list of objects which are added there while they
are analyzed.

• It checks whether an object has already been analyzed or
not. Fuel supports cycles. In addition, this offers to write
an object only once even if it is referenced from several
objects in the graph.

• It gives support for global objects, i.e., objects which
are considered global and should not be written into the
stream but instead put the minimal needed information
to get it back the reference at materialization time. This
is, for example, what is in Smalltalk globals. If there are
objects in the graph referencing the instance Transcript we
do not want to serialize it but instead just put a reference
to it and at materialization get it back. In this case, just
storing the global name is enough. The same happens
with the Smalltalk class pools.

6 2011/8/16

Once the analysis phase is over, the writing follows: it
iterates over every cluster and for every cluster write its
objects.

Stack over recursion. Most of the serializers use a depth-
first traversal mechanism to serialize the object graph. Such
mechanism consists of a simple recursion:

1. Take an object and look it up in a table.

2. If the object is in the table, it means that it has already
been serialized. The, we take a reference from the table
and write it down. If it is not present in the table, it means
that the object has not been serialized and that its contents
need to be written. After that, the object is serialized and
a reference representation is written into the table.

3. While writing the contents, e.g., instance variables of an
object, the serializer can encounter simple objects such
as instances of String, Float, SmallInteger, LargePositiveIn-
teger, ByteArray or complex objects (objects which have
instance variables that reference to other objects). In the
latter case we start over from the first step.

This mechanism can consume too much memory depend-
ing on the graph, e.g., its depth, the memory to hold all the
call stack of the recursion can be too much. In addition, a
Smalltalk dialect may limit the stack size.

In Fuel, we do not use the mentioned recursion but instead
we use a stack. The difference is mainly in the last step of the
algorithm. When an object has references to other objects,
instead of following the recursion to analyze these objects,
we just push such objects on a stack. Then we pop objects
from the stack and analyze them. The routine is to pop and
analyze elements until the stack is empty. In addition, to
improve even more the speed, Fuel has its own SimpleStack
class implementation.

That way, Fuel turns a recursive trace into depth-by-depth
trace. With this approach the resulting stack size is much
smaller and the memory footprint is smaller. At the same
time, we increase serialization time by 10%.

Notice that Fuel makes it possible because of the separate
analysis phase before the actual object serialization.

Two phases for writing instances and references. The
encoding of objects is divided in two parts: (1) instances
writing and (2) references writing. The first phase includes
just the minimal information needed to recreate the instances
i.e., the vertexes of the graph. The second phase has the
information to recreate references that connect the instances
i.e., the edges of the graph.

Iterative graph recreation. The pickling algorithm care-
fully sorts the instances paying attention to inter-depencencies.

During Fuel serialization, when a cluster is serialized,
the amount of objects of such cluster is stored, as well as
the total amount of objects of the whole graph. This means
that at materialization time, Fuel know exactly the number
of allocations (new objects) needed for each cluster. For
example, one Fuel file contains 17 large integers, 5 floats,
and 5 symbols, etc. In addition, for variable objects, Fuel

also stores the size of such objects. So for example, it does
not only know that there are 5 symbols but also that the first
symbol is size 4, the second one 20, the third 6, etc.

Therefore, the materialize populates an object table with
indices from 1 to N where N is the number of objects in the
file. However, it does so in batch, spinning in a loop creating
N instances of each class in turn, instead of determining
which object to create as it walks a (flattened) input graph,
as most of the serializers do.

Once that is done, the objects have been materialized, but
updating the references is pending, i.e., which slots refer to
which objects. Again the materializer can spin filling in slots
from the reference data instead of determining whether to
instantiate an object or dereference an object id as it walks
the input graph.

This is the main reason why materializing is much faster
in Fuel than the other approaches.

Buffered write stream. A serializer usually receives two
parameters from the user: the object graph to serialize and
the stream where the former should be stored. Most of the
time, such stream is a file stream or a socket stream. We
know that writing to primary memory is much faster that
writing to disc or to a network. Writing into a file stream
or a network stream for every single object is terribly slow.
Fuel uses an internal buffer to improve performance in that
scenario. With a small buffer e.g., 4096 elements, we get
almost the same speed writing to a file or socket stream, as
if we were writing in memory.

7. Fuel Features
In this section we analyze Fuel in accordance with the con-
cerns and features defined in Section 4.

7.1 Fuel serializer concerns
Performance. We achieved an excellent time performance.
This topic is extensively studied and explained in Section 8.

Completeness. We are close to say that Fuel deals with all
kinds of objects. Notice the difference between being able
to serialize and to get something meaningful while materi-
alizing. For example, Fuel can serialize and materialize in-
stances of Socket, Process or FileStream, but it is not sure
they will still be valid once they are materialized. For exam-
ple, the operating system may have given the socket address
to another process, the file associated to the file stream may
have been removed, etc.

There is no magic. Fuel provides the infrastructure to
solve the mentioned problems. For example, there is a hook
where a message can be implemented in a particular class
and such message will be send once the materialization
is done. In such method one can implement the necessary
behavior to get a meaningful object. For instance, a new
socket may be asked and assigned. Nevertheless sometimes
there is nothing to do, e.g., if the file of the file stream was
removed by the operating system.

It is worth to note here that some well known special
objects are treated as external references, because that is

7 2011/8/16

the expected behavior for a serializer. Some examples are
Smalltalk, Transcript and Processor.

Portability. As we explained in other sections, portability
is not our main focus. Thus, the only portability aspect we
are interested in is between Fuel versions. Below we talk
about our versioning mechanism.

Versatility and Abstraction capacity. Both concerns are
tightly tied. The goal is to be as concrete and exact as possi-
ble in the graph recreation, but providing flexible ways to
customize abstractions as well as other kinds of substitu-
tions in the graph. This last affirmation still has to be im-
plemented.

Security. Our goal is to give the user the possibility to con-
figure validation rules to be applied over the graph (ideally)
before having any secondary effect on the environment. This
is not yet implemented.

Atomicity. Unfortunately, Fuel can have problems if the
graph changes during the analysis or serialization phase.
This is an issue we have to work on in next versions.

7.2 Fuel serializer challenges
In this section, we explain how Fuel implements some of the
features previously commented. There are some mentioned
challenges we do not include here because Fuel does not
support them at the moment.

Maintaining identity. Although it can be disabled, the
default behavior when traversing the graph is to recog-
nize some objects as external references: Classes registered
in Smalltalk, global objects i.e., referenced by global vari-
ables, global bindings i.e., included in Smalltalk globals as-
sociations, and class variable bindings i.e., included in the
classPool of a registered class.

It is worth to mention that this mapping is done at object
granularity, e.g., not every instance of Class will be recog-
nized as external. If a class is not in Smalltalk globals or if it
has been specified as an internal class, it will be traversed
and serialized in full detail.

Transient values. Fuel supports this by the class-side hook
fuelIgnoredInstanceVariableNames. The user can specify there
a list of variable names whose values will not be traversed or
serialized. On materialization they will be restored as nil.

Cyclic object graphs and duplicates. Fuel checks that ev-
ery object of the graph is visited once, supporting both cycle
and duplicate detection.

Class shape change tolerance. Fuel stores the list of vari-
able names of the classes that have instances in the graph
being written. While recreating an object from the stream, if
its class (or anyone in the hierarchy) has changed, then this
meta information serves to automatically adapt the stored in-
stances. When a variable does not exist anymore, its value is
ignored. If a variable is new, it is restored as nil.

Versioning. This is provided by Fuel through a experimen-
tal implementation that wraps the standard Fuel format, ap-
pending at the beginning of the stream a version number.
When reading, if such number matches with the current ver-
sion, it is straightforward materialized in the standard way.
If it does not match, then another action can be taken de-
pending on the version. For example, suppose the difference
between the saved version and the current version is a cluster
that has been optimized and so their formats are incompati-
ble. Now, suppose the wrapper has access to the old cluster
class and so it configures the materializer to use this imple-
mentation instead of the optimized one. Then, it can adapt
the way it reads, providing backward compatibility.

Graphical progress update. Fuel has an optional package
that is used to show a progress bar while processing either
the analysis, the serialization or the materialization. This
GUI behavior is added via subclassification of Fuel core
classes, therefore it does not add overhead to the standard
non-interactive use case. This implementation is provisional
since the future idea is to apply a strategy design pattern.

8. Benchmarks
We have developed several benchmarks to compare different
serializers. To get meaningful results all benchmarks have to
be run in the same environment. In our case we run them in
the same Smalltalk dialect, with the same Virtual Machine
and same Smalltalk image. Fuel is developed in Pharo, and
hence the benchmarks were run in Pharo Smalltalk, image
version Pharo-1.3-13257 and Cog Virtual Machine version
“VMMaker.oscog-eem.56”. The operating system was Mac
OS 10.6.7.

In the following benchmarks we have analyzed the serial-
izers: Fuel, SIXX, SmartRefStream, ImageSegment, Magma
object database serializer, StOMP and SRP. Such serializers
are explained in Section 9.

8.1 Benchmarks Constraints and Characteristics
Benchmarking software as complex as a serializer is difficult
because there are multiple functions to measure which are
used independently in various real-world use-cases. More-
over, measuring only the speed of a serializer is not complete
and it may not even be fair if we do not mention the provided
features of each serializer. For example, providing a hook
for user-defined reinitialization action after materialization,
or supporting class shape changes slows down serializers.

Here is a list of constraints and characteristics we used to
get meaningful benchmarks:

All serializers in the same environment. We are not inter-
ested in compare speed with serializers that do not run in
Pharo.

Use default configuration for all serializers. Some seri-
alizers provide customizations to improve performance, i.e.,
some parameters or settings that the user can set for serial-
izing a particular object graph. Those settings would make
the serialization or materialization faster. For example, a se-

8 2011/8/16

rializer can provide a way to do not detect cycles. Detecting
cycles takes time and memory hence, not detecting them is
faster. Consequently, if there is a cycle in the object graph
to serialize, there will be a loop and finally a system crash.
Nevertheless, in certain scenarios the user may have a graph
that he knows that there is no cycles.

Streams. Another important point while measuring serial-
izers performance is which stream to be used. Usually, one
can use memory based stream based and file based streams.
Both measures are important and there can be significant dif-
ferences between them.

Distinguish serialization from materialization. It makes
sense to consider different benchmarks for the serialization
and for the materialization.

Different kind of samples. Benchmark samples are split in
two kinds: primitive and large. Samples of primitive objects
are samples with lots of objects which are instances of the
same class and that class is “primitive”. Examples of those
classes are Bitmap, Float, SmallInteger, LargePositiveInteger,
LargeNegativeInteger, String, Symbol, WideString, Character,
ByteArray, etc. Large objects are objects which are composed
by other objects which are instances of different classes,
generating a large object graph.

Primitive samples are useful to detect whether one serial-
izer is better than the rest while serializing or materializing
certain type of object. Large samples are more similar to the
expected user provided graphs to serialize and they try to
benchmark examples of real life object graphs.

Avoid JIT side effects. In Cog (the VM we used for bench-
marks), the first time a method is used, it is executed in the
standard way and added to the method cache. The second
time the method is used, that means, when it is found in the
cache, Cog converts that method to machine code. However,
extra time is needed for such task. Only the third time the
method will be executed as machine code and without extra
effort.

It is not fair to run sometimes with methods that has been
converted to machine code and sometimes with methods that
have not. Therefore, for the samples we first run twice the
same sample without taking into account its execution time
to be sure to be always in the same condition. Then the sam-
ple is finally executed and its execution time is computed.

8.2 Benchmarks serializing with memory based
streams

In this benchmarks we use memory based streams.

Primitive objects serialization. Figure 5 shows the results
of primitive objects serialization.

Figure 6 shows the materialization of the serialization
done for Figure 5.

The conclusions for serializing primitive objects with
memory based streams are:

• We did not include SIXX in the charts because it was
so slow that otherwise we were not able to show the

Figure 5. Primitive objects serialization in memory.

Figure 6. Primitive objects materialization from memory.

differences between the rest of the serializers. This result
is expected since SIXX is a text based serializer, which
is far slower than a binary one. However, SIXX can be
opened and modified by any text editor. This is an usual
trade-off between text and binary formats.

• Magma and SmartRefStream serializers seem to be the
slowest ones most of the cases.

• StOMP is the fastest one in serialization. Near to them
there are Fuel, SRP, and ImageSegment.

9 2011/8/16

• Magma serializer is slow with “raw bytes” objects such
as Bitmap and ByteArray, etc.

• Most of the cases, Fuel is faster than ImageSegment,
which is even implemented in the Virtual Machine.

• ImageSegment is really slow with Symbol instances. We
explain the reason later.

• StOMP has a zero (its color does not even appear) in the
WideString sample. That means that cannot serialize those
objects.

• In materialization, Fuel is the fastest one. Then after there
are StOMP and ImageSegment.

Large objects serialization. As explained, these samples
contain objects which are composed by other objects which
are instances of different classes, generating a large object
graph. Figure 7 shows the results of large objects serial-
ization. Such serialization is also done with memory based
stream. Figure 8 presents the materialization results when
using the same scenario of Figure 7.

Figure 7. Large objects serialization in memory.

The conclusions for large objects are:

• The differences in speed are similar to the previous
benchmarks. This means that whether we serialize graphs
of all primitive objects or objects instances of all differ-
ent classes, Fuel is the fastest one in materialization and
one of the best ones in serialization.

• StOMP, SRP, and SmartRefStream cannot serialize the
samples for arrays, orderedCollections, sets, etc. This is
because those samples contain different kind of objects,
included BlockClosure and MethodContext. This demon-
strates that the mentioned serializers does not support se-
rialization and materialization of all kind of objects. At
least, not out-of-the-box.

Figure 8. Large objects materialization from memory.

8.3 Benchmarks serializing with file based streams
Now we use file based streams. In fact, the exact stream
we use is MultiByteFileStream. Figure 9 shows the results of
primitive objects serialization.

Figure 9. Primitive objects serialization in file.

Figure 10 shows the same scenario of Figure 9 but the
results of the materialization.

The conclusions for serialization with file based streams
are:

• It is surprising the differences between serializing in
memory and in file. In serialization, SmartRefStream is
by far the slowest.

10 2011/8/16

Figure 10. Primitive objects materialization from file.

• SRP and StOMP have good performance when serializ-
ing in memory, but not at all when serializing to a file
based stream.

• Fuel is the fastest one, taking advantage of its internal
buffering technique.

• Magma was one of the slowest in memory based stream
but in this case it is much better.

• SmartRefStream and SRP are really slow with WideString
instances.

• ImageSegment is slow with Symbol instances.

The conclusions for materialization with file based streams
are:

• Again, Magma serializer is slow with “raw bytes” objects
such as Bitmap and ByteArray, etc.

• ImageSegment is slow with Symbol instances.

These benchmarks showed that different serializers per-
form differently when serializing in memory or in files.

8.4 ImageSegment Results Explained
ImageSegment seems to be really fast in certain scenarios.
However, it deserves some explanations of how ImageSeg-
ment works. Basically, ImageSegment receives the user de-
fined graph and it needs to distinguish between shared ob-
jects and inner objects. Inner objects are those objects inside
the subgraph which are only referenced from objects inside
the subgraph. Shared objects are those which are not only
referenced from objects inside the subgraph, but also from
objects outside.

All inner objects are put into a byte array which is finally
written into the stream using a primitive implemented in the
virtual machine. After, ImageSegment uses SmartRefStream

to serialize the shared objects. ImageSegment is fast mostly
because it is implemented in the virtual machine. However,
as we saw in our benchmarks, SmartRefStream is not really
fast. The real problem is that it is difficult to control which
objects in the system are pointing to objects inside the sub-
graph. Hence, most of the times there are several shared ob-
jects in the graph. The result is that the more shared objects
there are, the slower ImageSegment is because those shared
objects will be serialized by SmartRefStream.

All the benchmarks we did with primitive objects (all but
Symbol) take care to create graphs with zero or few shared
objects. That means that we are measuring the fastest pos-
sible case ever for ImageSegment. Nevertheless, in the sam-
ple of Symbol one can see in Figure 5 that ImageSegment is
really slow in serialization, and the same happens with ma-
terialization. The reason is that in Smalltalk all instances of
Symbol are unique and referenced by a global table. Hence,
all Symbol instances are shared and therefore, serialized with
SmartRefStream.

We did an experiment where we build an object graph and
we increase the percentage of shared objects.

Figure 11 shows the results of primitive objects serializa-
tion with file based stream. Axis X represents the percentage
of shared objects inside the graph and the axis Y represents
the time of the serialization.

Figure 11. ImageSegment serialization in presence of
shared objects.

Figure 12 shows the same scenario of Figure 11 but the
results of the materialization.

Conclusions for ImageSegment results
• The more shared objects there are, the more ImageSeg-

ment speed is similar to SmartRefStream.
• For materialization, when all are shared objects, Im-

ageSegment and SmartRefStream have almost the same
speed.

• For serialization, when all are shared objects, ImageSeg-
ment is even slower than SmartRefStream. This is be-

11 2011/8/16

Figure 12. ImageSegment materialization in presence of
shared objects.

cause ImageSegment needs to do the whole memory tra-
verse anyway to discover shared objects.

• ImageSegment is unique in the sense that its performance
depends in both: 1) the amount of references from outside
the subgraph to objects inside; 2) the total amount of
objects in the system, since the time to traverse the whole
memory depends on that.

8.5 General Benchmarks Conclusions
Magma serializer seems slow when serializing in memory,
but it is acceptable taking into account that this serializer
is designed for a particular database. Hence, the Magma
serializer does extra effort and stores extra information that
is needed in a database scenario but may not be necessary
for any other usage.

SmartRefSteam provides a good set of hook methods for
customizing serialization and materialization. However, it is
slow and its code and design are not good from our point of
view. ImageSegment is known to be really fast because it is
implemented inside the virtual machine. Such fact, together
with the problem of shared objects, brings a large number of
limitations and drawbacks as it has been already explained.
Furthermore, with Cog we demonstrate that Fuel is even
faster in both, materialization and serialization. Hence, the
limitations of ImageSegment are not worth it.

SRP and StOMP are both aimed for portability across
Smalltalk dialects. Their performance is good, mostly at
writing time, but they are not as fast as they could because
of the need of being portable across platforms. In addition,
for the same reason, they do not support serialization for all
kind of objects.

This paper demonstrates that Fuel is the fastest in ma-
terialization and one the fastest ones in serialization. In fact,
when serializing to files, which is what usually happens, Fuel
is the fastest. Fuel can also serialize any kind of object. Fuel

aim is not portability but performance. Hence, all the results
make sense from the goals point of view.

9. Related work
The most common example of a serializer is one based on
XML like SIXX [17] or JSON [9]. In this case the object
graph is exported into a portable text file. The main problem
with text-based serialization is encountered with big graphs
as it does not have a good performance and it generates huge
files. Other alternatives are ReferenceStream or SmartRefer-
enceStream. ReferenceStream is a way of serializing a tree
of objects into a binary file. A ReferenceStream can store
one or more objects in a persistent form including sharing
and cycles. The main problem of ReferenceStream is that it
is slow for large graphs.

A much more elaborated approach is Parcel [12] devel-
oped in VisualWorks Smalltalk. Fuel is based on Parcel’s
pickling ideas. Parcel is an atomic deployment mechanism
for objects and source code that supports shape changing
of classes, method addition, method replacement and partial
loading. The key to making this deployment mechanism fea-
sible and fast is a pickling algorithm. Although Parcel sup-
ports code and objects, it is more intended to source code
than normal objects. It defines a custom format and gener-
ates binary files. Parcel has good performance and the as-
sumption is that the user may not have a problem if saving
code takes more time, as long as loading is really fast.

The recent StOMP1 (Smalltalk Objects on MessagePack2)
and the mature SRP3 (State Replication Protocol) are bi-
nary serializers with similar goals: Smalltalk-dialect porta-
bility and space efficiency. They are quite fast and config-
urable, but they are limited with dialect-dependent objects
like BlockClosure and MethodContext. Despite the fact that
their main goals differ from ours, we should take into ac-
count their designs.

Object serializers are needed and used not only by final
users, but also for specific type of applications or tools. What
it is interesting is that they can be used outside the scope
of their project. Some examples are the object serializers of
Monticello2 (a source code version system), Magma object
database, Hessian binary web service protocol [7] or Oracle
Coherence*Web HTTP session management [13].

Martinez-Peck et al. [11] performed an analysis of Image-
Segment (a virtual machine serialization algorithm) and they
found that the speed increase in ImageSegment is mainly be-
cause it is written in C compared to other frameworks writ-
ten in Smalltalk. However, ImageSegment is slower when
objects in the subgraph to be serialized are externally refer-
enced.

1 http://www.squeaksource.com/STOMP.html
2 http://msgpack.org
3 http://sourceforge.net/projects/srp/

12 2011/8/16

http://www.squeaksource.com/STOMP.html
http://msgpack.org
http://sourceforge.net/projects/srp/

10. Conclusion and Future Work
In this paper, we have looked into the problem of serializing
object graphs in object oriented systems. We have analyzed
its problems and challenges. What is important is that these
steps, together with their problems and challenges, are gen-
eral and they are independent of the technology.

These object graphs operations are important to sup-
port virtual memory, backups, migrations, exportations, etc.
Speed is the biggest constraint in these kind of graph op-
erations. Any possible solution has to be fast enough to be
actually useful. In addition, this problem of performance is
the most common problem among the different solutions.
Most of them do not deal properly with it.

We presented Fuel, a general purpose object graph serial-
izer based on a pickling format and algorithm different from
typical serializers. The advantage is that the unpickling pro-
cess is optimized. In one hand, the objects of a particular
class are instantiated in bulk since they were carefully sorted
when pickling. In the other hand, this is done in an iterative
instead of a recursive way, what is common in serializers.
The disadvantage is that the pickling process takes an extra
time in comparison with other approaches. Besides, we show
in detailed benchmarks that we have the best performance in
most of the scenarios we are interested in.

We implement and validate this approach in the Pharo
Smalltalk environment. We demonstrate that it is possible
to build a fast serializer without specific VM support, with
a clean object-oriented design, and providing most possible
required features for a serializer.

Even if Fuel has an excellent performance and provided
hooks, it can still be improved. Regarding the hooks, we
would like to provide one that can let the user replace one
object by another one, which means that the serialized graph
is not exactly the same as the one provided by the user.

Instead of throwing an error, it is our plan to analyze the
possibility of create light-weight shadow classes when ma-
terializing instances of an inexistent class. Another impor-
tant issue we would like to work on is in making everything
optional, e.g., cycle detection. Partial loading as well as be-
ing able to query a serialized graph are concepts we want to
work in the future.

To conclude, Fuel is a fast object serializer built with a
clean design, easy to extend and customize. New features
will be added in the future and several tools will be build on
top of it.

Acknowledgements
This work was supported by Ministry of Higher Education
and Research, Nord-Pas de Calais Regional Council and
FEDER through the CPER 2007-2013.

References
[1] J. K. Bennett. The design and implementation of distributed

Smalltalk. In Proceedings OOPSLA ’87, ACM SIGPLAN
Notices, volume 22, pages 318–330, Dec. 1987.

[2] A. P. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou,
and M. Denker. Pharo by Example. Square Bracket Asso-
ciates, 2009.

[3] M. D. Bond and K. S. McKinley. Tolerating memory leaks.
In G. E. Harris, editor, OOPSLA: Proceedings of the 23rd
Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA
2008, October 19-23, 2008, Nashville, TN, USA, pages 109–
126. ACM, 2008.

[4] F. Breg and C. D. Polychronopoulos. Java virtual machine
support for object serialization. In Joint ACM Java Grande -
ISCOPE 2001 Conference, 2001.

[5] P. Butterworth, A. Otis, and J. Stein. The GemStone object
database management system. Commun. ACM, 34(10):64–77,
1991.

[6] D. Decouchant. Design of a distributed object manager for
the Smalltalk-80 system. In Proceedings OOPSLA ’86, ACM
SIGPLAN Notices, volume 21, pages 444–452, Nov. 1986.

[7] Hessian. http://hessian.caucho.com.

[8] Java serializer api. http://java.sun.com/developer/
technicalArticles/Programming/serialization/.

[9] Json (javascript object notation). http://www.json.org.

[10] T. Kaehler. Virtual memory on a narrow machine for an
object-oriented language. Proceedings OOPSLA ’86, ACM
SIGPLAN Notices, 21(11):87–106, Nov. 1986.

[11] M. Martinez Peck, N. Bouraqadi, M. Denker, S. Ducasse, and
L. Fabresse. Experiments with a fast object swapper. In
Smalltalks 2010, 2010.

[12] E. Miranda, D. Leibs, and R. Wuyts. Parcels: a fast and
feature-rich binary deployment technology. Journal of Com-
puter Languages, Systems and Structures, 31(3-4):165–182,
May 2005.

[13] Oracle coherence. http://coherence.oracle.com.

[14] Pickle. http://docs.python.org/library/pickle.html.

[15] Google protocol buffers. http://code.google.com/apis/
protocolbuffers/docs/overview.html.

[16] R. Riggs, J. Waldo, A. Wollrath, and K. Bharat. Pickling state
in the Java system. Computing Systems, 9(4):291–312, 1996.

[17] Sixx (smalltalk instance exchange in xml). http://www.mars.dti.
ne.jp/~umejava/smalltalk/sixx/index.html.

[18] D. Ungar. Annotating objects for transport to other worlds. In
Proceedings OOPSLA ’95, pages 73–87, 1995.

[19] D. Wiebe. A distributed repository for immutable persistent
objects. In Proceedings OOPSLA ’86, ACM SIGPLAN No-
tices, volume 21, pages 453–465, Nov. 1986.

13 2011/8/16

http://hessian.caucho.com
http://java.sun.com/developer/technicalArticles/Programming/serialization/
http://java.sun.com/developer/technicalArticles/Programming/serialization/
http://www.json.org
http://coherence.oracle.com
http://docs.python.org/library/pickle.html
http://code.google.com/apis/protocolbuffers/docs/overview.html
http://code.google.com/apis/protocolbuffers/docs/overview.html
http://www.mars.dti.ne.jp/~umejava/smalltalk/sixx/index.html
http://www.mars.dti.ne.jp/~umejava/smalltalk/sixx/index.html

	Introduction
	Glossary
	Serializer Possible Uses
	Serializer Features
	Serializer concerns
	Serializer challenges

	Fuel
	Pickle Formats
	Pickling a rectangle

	Fuel Key Characteristics
	Fuel Features
	Fuel serializer concerns
	Fuel serializer challenges

	Benchmarks
	Benchmarks Constraints and Characteristics
	Benchmarks serializing with memory based streams
	Benchmarks serializing with file based streams
	ImageSegment Results Explained
	General Benchmarks Conclusions

	Related work
	Conclusion and Future Work

